# The Average And Effective Value Of An Ac Waveform

** The Average and Effective Value of an AC Waveform:** The average or mean value of a continuous DC voltage will always be equal to its maximum peak value as a DC voltage is constant. This average value will only change if the duty cycle of the DC voltage changes. In a pure sine wave if the average value is calculated over the full cycle, the average value would be equal to zero as the positive and negative halves will cancel each other out. So the average or mean value of an AC waveform is calculated or measured over a half cycle only and this is shown below.

###
__Average Value of a Non-sinusoidal Waveform:__

To find the average value of the waveform we need to calculate the area underneath the waveform using the mid-ordinate rule, trapezoidal rule or Simpson's rule found in mathematics. The approximate area under any irregular waveform can easily be found by simply using the mid-ordinate rule. The zero axis base line is divided up into any number of equal parts and in our simple example above this value was nine, ( V_{1} to V_{9} ). The more ordinate lines that are drawn the more accurate will be the final average or mean value. The average value will be the addition of all the instantaneous values added together and then divided by the total number. This is given as.

Where: n equals the actual number of mid-ordinates used.

For a pure sinusoidal waveform this average or mean value will always be equal to 0.637 x V_{max} and this relationship also holds true for average values of current.

##
__Amplitude of an AC Waveform: __

As well as knowing either the periodic time or the frequency of the alternating quantity, another important parameter of the AC waveform is **Amplitude**, better known as its Maximum or Peak value represented by the terms, V*max* for voltage or I*max* for current. The peak value is the greatest value of either voltage or current that the waveform reaches during each half cycle measured from the zero baseline. Unlike a DC voltage or current which has a steady state that can be measured or calculated using *Ohm's Law*, an alternating quantity is constantly changing its value over time.

For pure sinusoidal waveforms this peak value will always be the same for both half cycles ( Vm = -Vm ) but for non-sinusoidal or complex waveforms the maximum peak value can be very different for each half cycle. Sometimes, alternating waveforms are given a *peak-to-peak*, V*p-p* value and this is simply the distance or the sum in voltage between the maximum peak value, V*max* and the minimum peak value, -V*max* during one complete cycle.