←
Data Mining & Data Warehousing
Community Mining From Multi Relational Networks
Introduction: With the growth of the Web, community mining has attracted increasing attention. A great deal of such work has focused on mining implicit communities of Web pages, of scientific literature from the Web, and of document citations. In principle, a community can be defined as a group of objects sharing some common properties. Community mining can be thought of as subgraph identification. For example, in Web page linkage, two Web pages (objects) are related if there is a hyperlink between them. A graph of Web page linkages can be mined to identify a community or set of Web pages on a particular topic.
- Most techniques for graph mining and community mining are based on a homogenous graph, that is, they assume only one kind of relationship exists between the objects. However, in real social networks, there are always various kinds of relationships between the objects. Each relation can be viewed as a relation network. In this sense, the multiple relations form a multi relational social network (also referred to as a heterogeneous social network). Each kind of relation may play a distinct role in a particular task. Here, the different relation graphs can provide us with different communities.
- To find a community with certain properties, we first need to identify which relation plays an important role in such a community. Such a relation might not exist explicitly, that is, we may need to first discover such a hidden relation before finding the community on such a relation network. Different users may be interested in different relations within a network. Thus, if we mine networks by assuming only one kind of relation, we may end up missing out on a lot of valuable hidden community information, and such mining may not be adaptable to the diverse information needs of various users. This brings us to the problem of multi relational community mining, which involves the mining of hidden communities on heterogeneous social networks.
- Let us consider a simple example. In a typical human community, there may exist many relations: some people work at the same place; some share the same interests; some go to the same hospital, and so on. Mathematically, this community can be characterized by a large graph in which the nodes represent people and the edges evaluate their relation strength. Because there are different kinds of relations, the edges of this graph should be heterogeneous. For some tasks, we can also model this community using several homogeneous graphs. Each graph reflects one kind of relation. Suppose an infectious disease breaks out, and the government tries to find those most likely to be infected. Obviously, the existing relationships among people cannot play an equivalent role. It seems reasonable to assume that under such a situation the relation “works at the same place” or “lives together” should play a critical role.