Data Reduction
Introduction: Imagine that you have selected data from the All Electronics data warehouse for analysis. The data set will likely be huge! Complex data analysis and mining on huge amounts of data can take a long time, making such analysis impractical or infeasible.
Data reduction techniques can be applied to obtain a reduced representation of the data set that is much smaller in volume, yet closely maintains the integrity of the original data. That is, mining on the reduced data set should be more efficient yet produce the same (or almost the same) analytical results.
Strategies for data reduction include the following:
1. Data cube aggregation, where aggregation operations are applied to the data in the construction of a data cube.
2. Attribute subset selection, where irrelevant, weakly relevant or redundant attributes or dimensions may be detected and removed.
3. Dimensionality reduction, where encoding mechanisms are used to reduce the data set size.
4. Numerosity reduction, where the data are replaced or estimated by alternative, smaller data representations such as parametric models (which need store only the model parameters instead of the actual data) or nonparametric methods such as clustering, sampling, and the use of histograms.
5. Discretization and concept hierarchy generation, where raw data values for attributes are replaced by ranges or higher conceptual levels. Data discretization is a form of numerosity reduction that is very useful for the automatic generation of concept hierarchies. Discretization and concept hierarchy generation are powerful tools for data mining, in that they allow the mining of data at multiple levels of abstraction. We therefore defer the discussion of discretization and concept hierarchy generation to
Section 2.6, which is devoted entirely to this topic. Strategies 1 to 4 above are discussed in the remainder of this section. The computational time spent on data reduction should not outweigh or “erase” the time saved by mining on a reduced data set size.
Data Cube Aggregation
Imagine that you have collected the data for your analysis. These data consist of the All Electronics sales per quarter, for the years 2002 to 2004. You are, however, interested in the annual sales (total per year), rather than the total per quarter. Thus the data can be aggregated so that the resulting data summarize the total sales per year instead of per quarter. This aggregation is illustrated in Figure 2.13. The resulting data set is smaller in volume, without loss of information necessary for the analysis task.
Data cubes are discussed in detail in Chapter 3 on data warehousing. We briefly introduce some concepts here. Data cubes store multidimensional aggregated information. For example, Figure 2.14 shows a data cube for multidimensional analysis of sales data with respect to annual sales per item type for each All Electronics branch. Each cell holds an aggregate data value, corresponding to the data point in multidimensional space. (For readability, only some cell values are shown.) Concept hierarchies may exist for each attribute, allowing the analysis of data at multiple levels of abstraction. For example, a hierarchy for branch could allow branches to be grouped into regions, based on their address. Data cubes provide fast access to precomputed, summarized data, thereby benefiting on-line analytical processing as well as data mining.
The cube created at the lowest level of abstraction is referred to as the base cuboid. The base cuboid should correspond to an individual entity of interest, such as sales or customer. In other words, the lowest level should be usable, or useful for the analysis. A cube at the highest level of abstraction is the apex cuboid. For the sales data of Figure 2.14, the apex cuboid would give one total—the total sales for all three years, for all item types, and for all branches. Data cubes created for varying levels of abstraction are often referred to as cuboids, so that a data cube may instead refer to a lattice of cuboids. Each higher level of abstraction further reduces the resulting data size. When replying to data mining requests, the smallest available cuboid relevant to the given task should be used.