Major Issues In Data Mining
Introduction: The scope of this book addresses major issues in data mining regarding mining methodology, user interaction, performance, and diverse data types.
These issues are introduced below:
Mining methodology and user interaction issues: These reflect the kinds of knowledge mined the ability to mine knowledge at multiple granularities, the use of domain knowledge, ad hoc mining, and knowledge visualization.
Mining different kinds of knowledge in databases: Because different users can be interested in different kinds of knowledge, data mining should cover a wide spectrum of data analysis and knowledge discovery tasks, including data characterization, discrimination, association and correlation analysis, classification, prediction, clustering, outlier analysis, and evolution analysis (which includes trend and similarity analysis). These tasks may use the same database in different ways and require the development of numerous data mining techniques.
Interactive mining of knowledge at multiple levels of abstraction: Because it is difficult to know exactly what can be discovered within a database, the data mining process should be interactive. For databases containing a huge amount of data, appropriate sampling techniques can first be applied to facilitate interactive data exploration. Interactive mining allows users to focus the search for patterns, providing and refining data mining requests based on returned results. Specifically, knowledge should be mined by drilling down, rolling up, and pivoting through the data space and knowledge space interactively, similar to what OLAP can do on data cubes. In this way, the user can interact with the data mining system to view data and discovered patterns at multiple granularities and from different angles.
Incorporation of background knowledge: Background knowledge, or information regarding the domain under study, may be used to guide the discovery process and allow discovered patterns to be expressed in concise terms and at different levels of abstraction. Domain knowledge related to databases, such as integrity constraints and deduction rules, can help focus and speed up a data mining process, or judge the interestingness of discovered patterns.
Data mining query languages and ad hoc data mining: Relational query languages (such as SQL) allow users to pose ad hoc queries for data retrieval. In a similar vein, high-level data mining query languages need to be developed to allow users to describe ad hoc data mining tasks by facilitating the specification of the relevant sets of data for analysis, the domain knowledge, the kinds of knowledge to be mined, and the conditions and constraints to be enforced on the discovered patterns. Such a language should be integrated with a database or data warehouse query language and optimized for efficient and flexible data mining.
Presentation and visualization of data mining results: Discovered knowledge should be expressed in high-level languages, visual representations, or other expressive forms so that the knowledge can be easily understood and directly usable by humans. This is especially crucial if the data mining system is to be interactive.
This requires the system to adopt expressive knowledge representation techniques, such as trees, tables, rules, graphs, charts, crosstabs, matrices, or curves.
Handling noisy or incomplete data: The data stored in a database may reflect noise, exceptional cases, or incomplete data objects. When mining data regularities, these objects may confuse the process, causing the knowledge model constructed to over fit the data. As a result, the accuracy of the discovered patterns can be poor. Data cleaning methods and data analysis methods that can handle noise are required, as well as outlier mining methods for the discovery and analysis of exceptional cases.
Pattern evaluation—the interestingness problem: A data mining system can uncover thousands of patterns. Many of the patterns discovered may be uninteresting to the given user, either because they represent common knowledge or lack novelty. Several challenges remain regarding the development of techniques to assess the interestingness of discovered patterns, particularly with regard to subjective measures that estimate the value of patterns with respect to a given user class, based on user beliefs or expectations. The use of interestingness measures or user-specified constraints to guide the discovery process and reduce the search space is another active area of research.