Mining Data Stream
Introduction: Mining data streams has attracted the attention of data mining community. A number of algorithms have been proposed for extracting knowledge from streaming information. In this section, we review clustering, classification, frequency counting and time series analysis techniques.
Tremendous and potentially infinite volumes of data streams are often generated by real-time surveillance systems, communication networks, Internet traffic, on-line transactions in the financial market or retail industry, electric power grids, industry production processes, scientific and engineering experiments, remote sensors, and other dynamic environments. Unlike traditional data sets, stream data flow in and out of a computer system continuously and with varying update rates. They are temporally ordered, fast changing, massive, and potentially infinite. It may be impossible to store an entire data stream or to scan through it multiple times due to its tremendous volume. Moreover, stream data tend to be of a rather low level of abstraction, whereas most analysts are interested in relatively high-level dynamic changes, such as trends and deviations. To discover knowledge or patterns from data streams, it is necessary to develop single-scan, on-line, multilevel, multidimensional stream processing and analysis methods.
Such single-scan, on-line data analysis methodology should not be confined to only stream data. It is also critically important for processing non stream data that are massive. With data volumes mounting by terabytes or even petabytes, stream data nicely capture our data processing needs of today: even when the complete set of data is collected and can be stored in massive data storage devices, single scan (as in data stream systems) instead of random access (as in database systems) may still be the most realistic processing mode, because it is often too expensive to scan such a data set multiple times.