Augmenting A Data Structure
Augmenting a Data Structure: The process of augmenting a basic data structure to support additional functionality occurs quite frequently in algorithm design. It will be used again in the next section to design a data structure that supports operations on intervals. In this section, we shall examine the steps involved in such augmentation. We shall also prove a theorem that allows us to augment red-black trees easily in many cases.
Augmenting a data structure can be broken into four steps:
-
choosing an underlying data structure,
-
determining additional information to be maintained in the underlying data structure,
-
verifying that the additional information can be maintained for the basic modifying operations on the underlying data structure, and
-
developing new operations.
As with any prescriptive design method, you should not blindly follow the steps in the order given. Most design work contains an element of trial and error, and progress on all steps usually proceeds in parallel. There is no point, for example, in determining additional information and developing new operations (steps 2 and 4) if we will not be able to maintain the additional information efficiently. Nevertheless, this four-step method provides a good focus for your efforts in augmenting a data structure, and it is also a good way to organize the documentation of an augmented data structure.
We followed these steps in Section 14.1 to design our order-statistic trees. For step 1, we chose red-black trees as the underlying data structure. A clue to the suitability of red-black trees comes from their efficient support of other dynamic-set operations on a total order, such as MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR.
For step 2, we provided the size field, in which each node x stores the size of the subtree rooted at x. Generally, the additional information makes operations more efficient. For example, we could have implemented OS-SELECT and OS-RANK using just the keys stored in the tree, but they would not have run in O(lg n) time. Sometimes, the additional information is pointer information rather than data,
For step 3, we ensured that insertion and deletion could maintain the size fields while still running in O(lg n) time. Ideally, only a few elements of the data structure should need to be updated in order to maintain the additional information. For example, if we simply stored in each node its rank in the tree, the OS-SELECT and OS-RANK procedures would run quickly, but inserting a new minimum element would cause a change to this information in every node of the tree. When we store subtree sizes instead, inserting a new element causes information to change in only O(lg n) nodes.
For step 4, we developed the operations OS-SELECT and OS-RANK. After all, the need for new operations is why we bother to augment a data structure in the first place. Occasionally, rather than developing new operations, we use the additional information to expedite existing ones,
Augmenting Red-Black Trees
When red-black trees underlie an augmented data structure, we can prove that certain kinds of additional information can always be efficiently maintained by insertion and deletion, thereby making step 3 very easy. The proof of the following theorem is similar to the argument from Section 14.1 that the size field can be maintained for order-statistic trees.
Let f be a field that augments a red-black tree T of n nodes, and suppose that the contents of f for a node x can be computed using only the information in nodes x, left[x], and right[x], including f[left[x]] and f[right[x]]. Then, we can maintain the values of f in all nodes of T during insertion and deletion without asymptotically affecting the O(lg n) performance of these operations.
Proof The main idea of the proof is that a change to an f field in a node x propagates only to ancestors of x in the tree. That is, changing f[x] may require f[p[x]] to be updated, but nothing else; updating f[p[x]] may require f[p[p[x]]] to be updated, but nothing else; and so on up the tree. When f[root[T]] is updated, no other node depends on the new value, so the process terminates. Since the height of a red-black tree is O(lg n), changing an f field in a node costs O(lg n) time in updating nodes dependent on the change.
Insertion of a node x into T consists of two phases. During the first phase, x is inserted as a child of an existing node p[x]. The value for f[x] can be computed in O(1) time since, by supposition, it depends only on information in the other fields of x itself and the information in x's children, but x's children are both the sentinel nil[T]. Once f[x] is computed, the change propagates up the tree. Thus, the total time for the first phase of insertion is O(lg n). During the second phase, the only structural changes to the tree come from rotations. Since only two nodes change in a rotation, the total time for updating the f fields is O(lg n) per rotation. Since the number of rotations during insertion is at most two, the total time for insertion is O(lg n).
Like insertion, deletion has two phases. In the first phase, changes to the tree occur if the deleted node is replaced by its successor, and when either the deleted node or its successor is spliced out. Propagating the updates to f caused by these changes costs at most O(lg n) since the changes modify the tree locally. Fixing up the red-black tree during the second phase requires at most three rotations, and each rotation requires at most O(lg n) time to propagate the updates to f . Thus, like insertion, the total time for deletion is O(lg n).