Neural Network & Fuzzy Systems

Fuzzy Relations

Introduction:-Fuzzy  Relations  describe  the  degree  of association  of  the elements; Example :  “x  is  approximately  equal  to  y”.    Fuzzy relations offer the capability to capture the uncertainty and vagueness in relations between sets and elements of a set.  Fuzzy Relations make the description of  a  concept  possible. Fuzzy Relations were introduced to supersede classical crisp relations; It  describes  the  total  presence  or absence  of  association  of  elements. 

Fuzzy relation  is  a  generalization  of  the  definition  of  fuzzy  set from  2-D space  to  3-D  space.

 Fuzzy relation :-Consider a Cartesian product 

     A x B  = { (x , y)  |   x  ∈  A,  y  ∈  B }

Where A  and  B  are subsets of universal sets U1 and U2.

Fuzzy relation on  A x B  is denoted by R  or  R(x , y)  is defined as the set

     R = { ((x , y) , µR (x , y))  |  (x , y)  ∈ A x B ,  µR (x , y)  ∈ [0,1] }

Where µR (x , y) is a function in two variables called membership function.

−  It gives the degree of membership of the ordered pair  (x , y) in  R associating with each pair  (x , y)   in  A x B   a  real  number  in  the  interval [0 , 1].

−  The degree of membership indicates  the degree to which  x  is in  relation  to  y.

Forming  Fuzzy Relations :-Assume that  V  and  W  are two collections of objects. 

A fuzzy relation is characterized in the same way as it is in a fuzzy set. 

−  The first item is a list containing element and membership grade pairs, 

        {{v1, w1}, R11}, {{ v1, w2}, R12}, ... , {{ vn, wm}, Rnm}}. 

Where  { v1, w1}, { v1, w2}, ... , { vn, wm} are the elements of the relation  are defined as ordered pairs, and { R11 ,  R12 , ... , Rnm} are the  membership grades of the  elements of the relation that range from 0 to 1, inclusive.

−  The second item is the universal space; for relations, the universal space  consists of a pair of ordered pairs, 

          {{ Vmin, Vmax, C1}, { Wmin, Wmax, C2}}. 

 Where the first pair defines the universal space for the first set  and the second pair defines the universal space for the second set.