Philosophiae Naturalis Principia Mathematica



SECT. III.

De motu corporum quæ resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata.

Prop. XI. Theor. VIII.

Si corpus resistitur partim in ratione velocitatis, partim in velocitatis ratione duplicata, & sola vi insita in Medio similari movetur, sumantur autem tempora in progressione Arithmetica: quantitates velocitatibus reciproce proportionales, data quadam quantitate auctæ, erunt in progressione Geometrica.

Figure for Prop. XI.

Centro C, Asymptotis rectangulis CADd & CH describatur Hyperbola BEeS, & Asymptoto CH parallelæ sint AB, DE, de. In Asymptoto CD dentur puncta A, G: Et si tempus exponatur per aream Hyperbolicam ABED uniformiter crescentem; dico quod velocitas exponi potest per longitudinem DF, cujus reciproca GD una cum data CG componat longitudinem CD in progressione Geometrica crescentem.

Sit enim areola DEed datum temporis incrementum quam minimum, & erit Dd reciproce ut DE, adeoque directe ut CD. Ipsius autem 1 ÷ GD decrementum, quod (per hujus Lem. II.) est Dd ÷ GDq. erit ut CD ÷ GDq. seu {CG + GD} ÷ GDq., id est, ut {1 ÷ GD} + {CG ÷ GDq.}. Igitur tempore ABED per additionem datarum particularum EDde uniformiter crescente, decrescit 1 ÷ GD in eadem ratione cum velocitate. Nam decrementum velocitatis est ut resistentia, hoc est (per Hypothesin) ut summa duarum quantitatum, quarum una est ut velocitas, altera ut quadratum velocitatis; & ipsius 1 ÷ GD decrementum est ut summa quantitatum 1 ÷ GD & CG ÷ GDq., quarum prior est ipsa 1 ÷ GD, & posterior CG ÷ GDq. est ut 1 ÷ GDq.. Proinde 1 ÷ GD, ob analogum decrementum, est ut velocitas. Et si quantitas GD ipsi 1 ÷ GD reciproce proportionalis quantitate data CG augeatur, summa CD, tempore ABED uniformiter crescente, crescet in progressione Geometrica.   Q. E. D.

Corol. 1. Igitur si datis punctis A, G, exponatur tempus per aream Hyperbolicam ABED, exponi potest velocitas per ipsius GD reciprocam 1 ÷ GD.

Corol. 2. Sumendo autem GA ad GD ut velocitatis reciproca sub initio, ad velocitatis reciprocam in fine temporis cujusvis ABED, invenietur punctum G. Eo autem invento, velocitas ex dato quovis alio tempore inveniri potest.

Prop. XII. Theor. IX.

Iisdem positis, dico quod si spatia descripta sumantur in progressione Arithmetica, velocitates data quadam quantitate auctæ erunt in progressione Geometrica.

In Asymptoto CD detur punctum R, & erecto perpendiculo RS, quod occurrat Hyperbolæ in S, exponatur descriptum spatium per aream Hyperbolicam RSED; & velocitas erit ut longitudo GD, quæ cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.

Etenim ob datum spatii incrementum EDde, lineola Dd, quæ decrementum est ipsius GD, erit reciproce ut ED, adeoq; directe ut CD, hoc est ut summa ejusdem GD & longitudinis datæ CG. Sed velocitatis decrementum, tempore sibi reciproce proportionali, quo data spatii particula DdeE describitur, est ut resistentia & tempus conjunctim, id est directe ut summa duarum quantitatum, quarum una est velocitas, altera ut velocitatis quadratum, & inverse ut velocitas; adeoque directe ut summa dearum quantitatum, quarum una datur, altera est ut velocitas. Igitur decrementum tam velocitatis quam lineæ GD, est ut quantitas data & quantitas decrescens conjunctim, & propter analoga decrementa, analogæ semper erunt quantitates decrescentes: nimirum velocitas & linea GD.   Q. E. D.

Corol. 1. Igitur si velocitas exponatur per longitudinem GD, spatium descriptum erit ut area Hyperbolica DESR.

Corol. 2. Et si utcunque assumatur punctum R, invenietur punctum G, capiendo GD ad GR ut est velocitas sub initio ad velocitatem post spatium quodvis ABED descriptum. Invento autem puncto G, datur spatium ex data velocitate, & contra.

Corol. 3. Unde cum, per Prop. XI. detur velocitas ex dato tempore, & per hanc Propositionem detur spatium ex data velocitate; dabitur spatium ex dato tempore: & contra.

Prop. XIII. Theor. X.

Figure for Prop. XIII.

Posito quod corpus ab uniformi gravitate deorsum attractum recta ascendit vel descendit, & resistitur partim in ratione velocitatis, partim in ejusdem ratione duplicata: dico quod si Circuli & Hyperbolæ diametris parallelæ rectæ per conjugatarum diametrorum terminos ducantur, & velocitates sint ut segmenta quædam parallelarum a dato puncto ducta, Tempora erunt ut arearum Sectores, rectis a centro ad segmentorum terminos ductis abscissi: & contra.

Cas. 1. Ponamus primo quod corpus ascendit, centroque D & semidiametro quovis DB describatur circuli quadrans BETF, & per semidiametri DB terminum B agatur infinita BAP, semidiametro DF parallela. In ea detur punctum A, & capiatur segmentum AP velocitati proportionale. Et cum resistentiæ pars aliqua sit ut velocitas & pars altera ut velocitatis quadratum, fit resistentia tota in P ut AP quad. + 2PAB. Jungantur DA, DP circulum secantes in E ac T, & exponatur gravitas per DA quadratum, ita ut sit gravitas ad resistentiam in P ut DAq. ad APq. + 2PAB: & tempus ascensus omnis futuri erit ut circuli sector EDTE.

Agatur enim DVQ, abscindens & velocitatis AP momentum PQ, & Sectoris DET momentum DTV dato temporis momento respondens: & velocitatis decrementum illud PQ erit ut summa virium gravitatis DBq. & resistentiæ APq. + 2BAP, id est (per Prop. 12. Lib. II. Elem.) ut DP quad. Proinde area DPQ, ipsi PQ proportionalis, est ut DP quad.; & area DTV, (quæ est ad aream DPQ ut DTq. ad DPq.) est ut datum DTq. Decrescit igitur area EDT uniformiter ad modum temporis futuri, per subductionem datarum particularum DTV, & propterea tempori ascensus futuri proportionalis est.   Q. E. D.

Figure for Cas. 2.

Cas. 2. Si velocitas in ascensu corporis exponatur per longitudinem AP ut prius, & resistentia ponatur esse ut APq. + 2BAP, & si vis gravitatis minor sit quam quæ per DAq. exponi possit; capiatur BD ejus longitudinis, ut sit ABq. - BDq. gravitati proportionale, sitque DF ipsi DB perpendicularis & æqualis, & per verticem F describatur Hyperbola FTVE cujus semidiametri conjugatæ sint DB & DF, quæq; secet DA in E, & DP, DQ in T & V; & erit tempus ascensus futuri ut Hyperbolæ sector TDE.

Nam velocitatis decrementum PQ, in data temporis particula factum, est ut summa resistentiæ APq. + 2ABP & gravitatis ABq. - BDq. id est ut BPq. - BDq. Est autem area DTV ad aream DPQ ut DTq. ad DPq. adeoque, si ad DF demittatur perpendiculum GT, ut GTq. seu GDq. - DFq. ad BDq. utque GDq. ad PBq. & divisim ut DFq. ad BPq. - DBq. Quare cum area DPQ sit ut PQ, id est ut BPq. - BDq. erit area DTV ut datum DFq. Decrescit igitur area EDT uniformiter singulis temporis particulis æqualibus, per subductionem particularum totidem datarum DTV, & propterea tempori proportionalis est.   Q. E. D.

Cas. 3. Sit AP velocitas in descensu corporis, & APq. + 2ABP resistentia, & DBq. - ABq. vis gravitatis, existente angulo DAB recto. Et si centro D, vertice principali B, describatur Hyperbola rectangula BETV secans productas DA, DP & DQ in E, T & V; erit Hyperbolæ hujus sector DET ut tempus descensus.

Figure for Cas. 3.

Nam velocitatis incrementum PQ, eiq; proportionalis area DPQ, est ut excessus gravitatis supra resistentiam, id est, ut DBq. - ABq. - 2ABP - APq. seu DBq. - BPq. Et area DTV est ad aream DPQ ut DTq. ad DPq. adeoq; ut GTq. seu GDq. - BDq. ad BPq. utque GDq. ad BDq. & divisim ut BDq. ad BDq. - BPq. Quare cum area DPQ sit ut BDq. - BPq. erit area DTV ut datum BDq. Crescit igitur area EDT uniformiter singulis temporis particulis æqualibus, per additionem totidem datarum particularum DTV, & propterea tempori descensus proportionalis est.   Q. E. D.

Corol. Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti; ideoque ex dato tempore datur. Nam velocitas in Medio non resistente, tempori atque adeo Sectori huic proportionalis est; in Medio resistente est ut triangulum; & in Medio utroq; ubi quam minima est, accedit ad rationem æqualitatis, pro more Sectoris & Trianguli.

Prop. XIV. Prob. IV.

Iisdem positis, dico quod spatium ascensu vel descensu descriptum, est ut summa vel differentia areæ per quam tempus exponitur, & areæ cujusdam alterius quæ augetur vel diminuitur in progressione Arithmetica; si vires ex resistentia & gravitate compositæ sumantur in progressione Geometrica.

Capiatur AC (in Fig. tribus ultimis,) gravitati, & AK resistentiæ proportionalis. Capiantur autem ad easdem partes puncti A si corpus ascendit, aliter ad contrarias. Erigatur Ab quæ sit ad DB ut DBq. ad 4BAC: & area AbNK augebitur vel diminuetur in progressione Arithmetica, dum vires CK in progressione Geometrica sumuntur. Dico igitur quod distantia corporis ab ejus altitudine maxima sit ut excessus areæ AbNK supra aream DET.

Nam cum AK sit ut resistentia, id est ut APq. + 2BAP; assumatur data quævis quantitas Z, & ponatur AK æqualis {APq. + 2BAP} ÷ Z; & (per hujus Lem. II.) erit ipsius AK momentum KL æquale {2APQ + 2BA × PB} ÷ Z seu 2BPQ ÷ Z, & areæ AbNK momentum KLON æquale 2BPQ × LO ÷ Z seu {BPQ × BD cub.} ÷ {2Z × CK × AB}.

Cas. 1. Jam si corpus ascendit, sitque gravitas ut ABq. + BDq. existente BET circulo, (in Fig. Cas. 1. Prop. XIII.) linea AC, quæ gravitati proportionalis est, erit {ABq. + BDq.} ÷ Z & DPq. seu APq. + 2BAP + ABq. + BDq. erit AK × Z + AC × Z seu CK × Z; ideoque area DTV erit ad aream DPQ ut DTq. vel DBq. ad CK × Z.

Cas. 2. Sin corpus ascendit, & gravitas sit ut ABq. - BDq. linea AC (Fig. Cas. 2. Prop. XIII.) erit {ABq. - BDq.} ÷ Z, & DTq. erit ad DPq. ut DFq. seu DBq. ad BPq. - BDq. seu APq. + 2BAP + ABq. - BDq. id est ad AK × Z + AC × Z seu CK × Z. Ideoque area DTV erit ad aream DPQ ut DBq. ad CK × Z.

Cas. 3. Et eodem argumento, si corpus descendit, & propterea gravitas sit ut BDq. - ABq. & linea AC (Fig. Cas. 3. Prop. præced.) æquetur {BDq. - ABq.} ÷ Z erit area DTV ad aream DPQ ut DBq. ad CK × Z: ut supra.

Cum igitur areæ illæ semper sint in hac ratione; si pro area DTV, qua momentum temporis sibimet ipsi semper æquale exponitur, scribatur determinatum quodvis rectangulum, puta BD × m, erit area DPQ, id est, ½BD × PQ; ad BD × m ut CK in Z ad BDq. Atq; inde fit PQ in BD cub. æquale 2BD × m × CK × Z, & areæ AbNK momentum KLON superius inventum, fit BP × BD × m ÷ AB. Auferatur areæ DET momentum DTV seu BD × m, & restabit AP × BD × m ÷ AB. Est igitur differentia momentorum, id est, momentum differentiæ arearum, æqualis AP × BD × m ÷ AB; & propterea (ob datum BD × m ÷ AB) ut velocitas AP, id est ut momentum spatii quod corpus ascendendo vel descendendo describit. Ideoque differentia arearum & spatium illud proportionalibus momentis crescentia vel decrescentia, & simul incipientia vel simul evanescentia, sunt proportionalia.   Q. E. D.

Corol. Igitur si longitudo aliqua V sumatur in ea ratione ad arcum ET, quam habet linea DA ad lineam DE; spatium quod corpus ascensu vel descensu toto in Medio resistente describit, erit ad spatium quod in Medio non resistente eodem tempore describere posset, ut arearum illarum differentia ad BD × V2 ÷ 4AB, ideoque ex dato tempore datur. Nam spatium in Medio non resistente est in duplicata ratione temporis, sive ut V2, & ob datas BD & AB, ut BD × V2 ÷ 4AB. Tempus autem est ut DET seu ½BD × ET, & harum arearum momenta sunt ut BD × V ÷ 2AB ductum in momentum ipsius V & ½BD ductum in momentum ipsius ET, id est, ut BD × V ÷ 2AB in DAq. × 2m ÷ DEq. & ½BD × 2m, sive ut {BD × V × DAq. × m} ÷ {AB × DEq.} & BD × m. Et propterea momentum areæ V2 est ad momentum differentiæ arearum DET & AKNb, ut {BD × V × DA × m} ÷ {AB × DE} ad AP × BD × m ÷ AB sive ut V × DA ÷ DE ad AP; adeoque, ubi V & AP quam minimæ sunt, in ratione æqualitatis. Æqualis igitur est area quam minima BD × V2 ÷ 4AB differentiæ quam minimæ arearum DET & AKNb. Unde cum spatia in Medio utroque, in principio descensus vel fine ascensus simul descripta accedunt ad æqualitatem, adeoque tunc sunt ad invicem ut area BD × V2 ÷ 4AB & arearum DET & AKNb differentia; ob eorum analoga incrementa necesse est ut in æqualibus quibuscunque temporibus sint ad invicem ut area illa BD × V2 ÷ 4AB & arearum DET & AKNb differentia.   Q. E. D.



SECT. IV.

De Corporum circulari Motu in Mediis resistentibus.

LEM. III.

Sit PQRr Spiralis quæ secet radios omnes SP, SQ, SR, &c. in æqualibus angulis. Agatur recta PT quæ tangat eandem in puncto quovis P, secetque radium SQ in T; & ad Spiralem erectis perpendiculis PO, QO concurrentibus in O, jungatur SO. Dico quod si puncta P & Q accedant ad invicem & coeant, angulus PSO evadet rectus, & ultima ratio rectanguli TQ × PS ad PQ quad. erit ratio æqualitatis.

Figure for Lemma III. and Prop. XV.

Etenim de angulis rectis OPQ, OQR subducantur anguli æquales SPQ, SQR, & manebunt anguli æquales OPS, OQS. Ergo circulus qui transit per puncta O, S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam OP. Fiet igitur OP diameter circuli hujus, & angulus OSP in semicirculo rectus.   Q. E. D.

Ad OP demittantur perpendicula QD, SE, & linearum rationes ultimæ erunt hujusmodi: TQ ad PD ut TS vel PS ad PE, seu PO ad PS. Item PD ad PQ ut PQ ad PO. Et ex æquo perturbate TQ ad PQ ut PQ ad PS. Unde fit PQq. æqualis TQ × PS.   Q. E. D.

Prop. XV. Theor. XI.

Si Medii densitas in locis singulis sit reciproce ut distantia locorum a centro immobili, sitque vis centripeta in duplicata ratione densitatis: dico quod corpus gyrari potest in Spirali, quæ radios omnes a centro illo ductos intersecat in angulo dato.

Ponantur quæ in superiore Lemmate, & producatur SQ ad V, ut sit SV æqualis SP. Temporibus æqualibus describat corpus arcus quam minimos PQ & QR, sintque areæ PSQ, QSr æquales. Et quoniam vis centripeta, qua corpus urgetur in P est reciproce ut SPq. & (per Lem. X. Lib. I.) lineola TQ, quæ vi illa generatur, est in ratione composita ex ratione hujus vis & ratione duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu, ut infinite minorem quam vis centripeta negligo) erit TQ × SPq. id est (per Lemma novissimum) PQq. × SP, in ratione duplicata temporis, adeoque tempus est ut PQ × √SP, & corporis velocitas qua arcus PQ illo tempore describitur ut PQ ÷ {PQ × √SP} seu 1 ÷ √SP, hoc est in dimidiata ratione ipsius SP reciproce. Et simili argumento velocitas, qua arcus QR describitur, est in dimidiata ratione ipsius SQ reciproce. Sunt autem arcus illi PQ & QR ut velocitates descriptrices ad invicem, id est in dimidiata ratione SQ ad SP, sive ut SQ ad √SP × √SQ; & ob æquales angulos SPQ, SQr & æquales areas PSQ, QSr, est arcus PQ ad arcum Qr ut SQ ad SP. Sumantur proportionalium consequentium differentiæ, & fiet arcus PQ ad arcum Rr ut SQ ad SP - SP½ × SQ½, seu ½VQ; nam punctis P & Q coeuntibus, ratio ultima SP - SP½ × SQ½ ad ½VQ fit æqualitatis. In Medio non resistente areæ æquales PSQ, QSr (Theor. I. Lib. I.) temporibus æqualibus describi deberent. Ex resistentia oritur arearum differentia RSr, & propterea resistentia est ut lineolæ Qr decrementum Rr collatum cum quadrato temporis quo generatur. Nam lineola Rr (per Lem. X. Lib. I.) est in duplicata ratione temporis. Est igitur resistentia ut Rr ÷ {PQq. × SP}. Erat autem PQ ad Rr ut SQ ad ½VQ, & inde Rr ÷ {PQq. × SP} fit ut ½VQ ÷ {PQ × SP × SQ} sive ut ½OS ÷ {OP × SPq.}. Namque punctis P & Q coeuntibus, SP & SQ coincidunt; & ob similia triangula PVQ, PSO, fit PQ ad ½VQ ut OP ad ½OS. Est igitur OS ÷ {OP × SPq.} ut resistentia, id est in ratione densitatis Medii in P & ratione duplicata velocitatis conjunctim. Auferatur duplicata ratio velocitatis, nempe ratio 1 ÷ SP, & manebit Medii densitas in P ut OS ÷ {OP × SP}. Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii in P erit ut 1 ÷ SP. In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali.   Q. E. D.

Corol. 1. Velocitas in loco quovis P ea semper est quacum corpus in Medio non resistente gyrari potest in circulo, ad eandem a centro distantiam SP.

Corol. 2. Medii densitas, si datur distantia SP, est ut OS ÷ OP, sin distantia illa non datur, ut OS ÷ {OP × SP}. Et inde Spiralis ad quamlibet Medii densitatem aptari potest.

Corol. 3. Vis resistentiæ in loco quovis P, est ad vim centripetam in eodem loco ut ½OS ad OP. Nam vires illæ sunt ut lineæ Rr & TQ seu ut ½VQ × PQ ÷ SQ & PQq. ÷ SP quas simul generant, hoc est, ut ½VQ & PQ, seu ½OS & OP. Data igitur Spirali datur proportio resistentiæ ad vim centripetam, & viceversa ex data illa proportione datur Spiralis.

Corol. 4. Corpus itaque gyrari nequit in hac spirali, nisi ubi vis resistentiæ minor est quam dimidium vis centripetæ. Fiat resistentia æqualis dimidio vis centripetæ & Spiralis conveniet cum linea recta PS, inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate qua probavimus in superioribus in casu Parabolæ (Theor. X. Lib. I.) descensum in Medio non resistente fieri. Unde tempora descensus hic erunt dupla majora temporibus illis atque adeo dantur.

Corol. 5. Et quoniam in æqualibus a centro distantiis velocitas eadem est in Spirali PQR atque in recta SP, & longitudo Spiralis ad longitudinem rectæ PS est in data ratione, nempe in ratione OP ad OS; tempus descensus in Spirali erit ad tempus descensus in recta SP in eadem illa data ratione, proindeque datur.

Corol. 6. Si centro S intervallis duobus describantur duo circuli; numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum radio PS; tempus vero revolutionum earundem ut OP ÷ OS, id est reciproce ut Medii densitas.

Figure for Corol. 7.

Corol. 7. Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quæ fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:) corpus illud perget innumeras consimiles revolutiones BFC, CGD, &c. facere, & intersectionibus distinguet Radium AS in partes AS, BS, CS, DS &c. continue proportionales. Revolutionum vero tempora erunt ut Perimetri orbitarum AEB, BFC, CGD &c. directe, & velocitates in principiis A, B, C, inverse; id est ut AS½, BS½, CS½. Atq; tempus totum, quo corpus perveniet ad centrum, erit ad tempus revolutionis primæ, ut summa omnium continue proportionalium AS½, BS½, CS½ pergentium in infinitum, ad terminum primum AS½; id est ut terminus ille primus AS½ ad differentiam duorum primorum AS½ - BS½, & quam proxime ut ⅔AS ad AB. Unde tempus illud totum expedite invenitur.

Corol. 8. Ex his etiam præterpropter colligere licet motus corporum in Mediis, quorum densitas aut uniformis est, aut aliam quamcunque legem assignatam observat. Centro S intervallis continue proportionalibus SA, SB, SC &c. describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime; Sed & in eadem quoq; ratione esse Tangentem anguli quo Spiralis præfinita, in Medio de quo egimus, secat radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in Medio proposito: Atq; etiam ut sunt eorundem angulorum secantes ita esse tempora revolutionum omnium inter circulos eosdem duos quam proxime. Si hæc fiant passim inter circulos binos, continuabitur motus per circulos omnes. Atque hoc pacto haud difficulter imaginari possimus quibus modis ac temporibus corpora in Medio quocunque regulari gyrari debebunt.

Corol. 9. Et quamvis motus excentrici in Spiralibus ad formam Ovalium accedentibus peragantur; tamen concipiendo Spiralium illarum singulas revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.

Prop. XVI. Theor. XII.

Si Medii densitas in locis singulis sit reciproce ut dignitas aliqua distantiæ locorum a centro, sitque vis centripeta reciproce ut distantia in dignitatem illam ducta: dico quod corpus gyrari potest in Spirali, quæ radios omnes a centro illo ductos intersecat in angulo dato.

Demonstratur eadem methodo cum Propositione superiore. Nam si vis centripeta in P sit reciproce ut distantiæ SP dignitas quælibet SPn + 1 cujus index est n + 1; colligetur ut supra, quod tempus quo corpus describit arcum quemvis PQ erit ut PQ × SP½n & resistentia in P ut Rr ÷ {PQq. × SPn} sive ut ½nVQ ÷ {PQ × SPn × SQ}, adeoque ut ½OS ÷ {OP × SPn + 1}. Et propterea densitas in P est reciproce ut SPn.

Scholium.

Cæterum hæc Propositio & superiores, quæ ad Media inæqualiter densa spectant, intelligendæ sunt de motu corporum adeo parvorum, ut Medii ex uno corporis latere major densitas quam ex altero non consideranda veniat. Resistentiam quoque cæteris paribus densitati proportionalem esse suppono. Unde in Mediis quorum vis resistendi non est ut densitas, debet densitas eo usque augeri vel diminui, ut resistentiæ vel tollatur excessus vel defectus suppleatur.

Prop. XVII. Prob. V.

Invenire & vim centripetam & Medii resistentiam qua corpus in data Spirali data lege revolvi potest. Vide Fig. Prop. XV.

Sit spiralis illa PQR. Ex velocitate qua corpus percurrit arcum quam minimum PQ dabitur tempus, & ex altitudine TQ, quæ est ut vis centripeta & quadratum temporis dabitur vis. Deinde ex arearum, æqualibus temporum particulis confectarum PSQ & QSR, differentia RSr, dabitur corporis retardatio, & ex retardatione invenietur resistentia ac densitas Medii.

Prop. XVIII. Prob. VI.

Data lege vis centripetæ, invenire Medii densitatem in locis singulis, qua corpus datam Spiralem describet.

Ex vi centripeta invenienda est velocitas in locis singulis, deinde ex velocitatis retardatione quærenda Medii densitas: ut in Propositione superiore.

Methodum vero tractandi hæc Problemata aperui in hujus Propositione decima, & Lemmate secundo; & Lectorem in hujusmodi perplexis disquisitionibus diutius detenere nolo. Addenda jam sunt aliqua de viribus corporum ad progrediendum, deque densitate & resistentia Mediorum, in quibus motus hactenus expositi & his affines peraguntur.



SECT. V.

De Densitate & compressione Fluidorum, deque Hydrostatica.

Definitio Fluidi.

Fluidum est corpus omne cujus partes cedunt vi cuicunque illatæ, & cedendo facile movetur inter se.

Prop. XIX. Theor. XIII.

Fluidi homogenei & immoti, quod in vase quocunque immoto clauditur & undique comprimitur, partes omnes (seposita Condensationis, gravitatis & virium omnium centripetarum consideratione) æqualiter premuntur undique, & absque omni motu a pressione illa orto permanent in locis suis.

Figure for Prop. XIX.

Cas. 1. In vase sphærico ABC claudatur & uniformiter comprimatur fluidum undique: dico quod ejusdem pars nulla ex illa pressione movebitur. Nam si pars aliqua D moveatur, necesse est ut omnes ejusmodi partes, ad eandem a centro distantiam undique consistentes, simili motu simul moveantur; atq; hoc adeo quia similis & æqualis est omnium pressio, & motus omnis exclusus supponitur, nisi qui a pressione illa oriatur. Atqui non possunt omnes ad centrum propius accedere, nisi fluidum ad centrum condensetur; contra Hypothesin. Non possunt longius ab eo recedere nisi fluidum ad circumferentiam condensetur; etiam contra Hypothesin. Non possunt servata sua a centro distantia moveri in plagam quamcunq; quia pari ratione movebuntur in plagam contrariam; in plagas autem contrarias non potest pars eadem eodem tempore moveri. Ergo fluidi pars nulla de loco suo movebitur.   Q. E. D.

Cas. 2. Dico jam quod fluidi hujus partes omnes sphæricæ æqualiter premuntur undique: sit enim EF pars sphærica fluidi, & si hæc undiq; non premitur æqualiter, augeatur pressio minor, usq; dum ipsa undiq; prematur æqualiter; & partes ejus, per casum primum, permanebunt in locis suis. Sed ante auctam pressionem permanebunt in locis suis, per casum eundum primum, & additione pressionis novæ movebuntur de locis suis, per definitionem Fluidi. Quæ duo repugnant. Ergo falso dicebatur quod Sphæra EF non undique premebatur æqualiter.   Q. E. D.

Cas. 3. Dico præterea quod diversarum partium sphæricarum æqualis sit pressio. Nam partes sphæricæ contiguæ se mutuo premunt æqualiter in puncto contactus, per motus Legem III. Sed & per Casum secundum, undiq; premuntur eadem vi. Partes igitur duæ quævis sphæricæ non contiguæ, quia pars sphærica intermedia tangere potest utramque, prementur eadem vi.   Q. E. D.

Cas. 4. Dico jam quod fluidi partes omnes ubiq; premuntur æqualiter. Nam partes duæ quævis tangi possunt a partibus Sphæricis in punctis quibuscunque, & ibi partes illas Sphæricas æqualiter premunt, per Casum 3. & vicissim ab illis æqualiter premuntur, per Motus Legem Tertiam.   Q. E. D.

Cas. 5. Cum igitur fluidi pars quælibet GHI in fluido reliquo tanquam in vase claudatur, & undique prematur æqualiter, partes autem ejus se mutuo æqualiter premant & quiescant inter se; manifestum est quod Fluidi cujuscunque GHI, quod undique premitur æqualiter, partes omnes se mutuo premunt æqualiter, & quiescunt inter se.   Q. E. D.

Cas. 6. Igitur si Fluidum illud in vase non rigido claudatur, & undique non prematur æqualiter, cedet idem pressioni fortiori, per Definitionem Fluiditatis.

Cas. 7. Ideoque in vase rigido Fluidum non sustinebit pressionem fortiorem ex uno latere quam ex alio, sed eidem cedet, idq; in momento temporis, quia latus vasis rigidum non persequitur liquorem cedentem. Cedendo autem urgebit latus oppositum, & sic pressio undique ad æqualitatem verget. Et quoniam Fluidum, quam primum a parte magis pressa recedere conatur, inhibetur per resistentiam vasis ad latus oppositum; reducetur pressio undique ad æqualitatem in momento temporis absque motu locali; & subinde, partes fluidi, per Casum quintum, se mutuo prement æqualiter, & quiescent inter se.   Q. E. D.

Corol. Unde nec motus partium fluidi inter se, per pressionem fluido ubivis in externa superficie illatam, mutari possunt nisi, quatenus aut figura superficiei alicubi mutatur, aut omnes fluidi partes intensius vel remissius sese premendo difficilius vel facilius labuntur inter se.

Prop. XX. Theor. XIV.

Si Fluidi Sphærici, & in æqualibus a centro distantiis homogenei, fundo sphærico concentrico incumbentis partes singulæ versus centrum totius gravitent; sustinet fundum pondus Cylindri, cujus basis æqualis est superficiei fundi, & altitudo eadem quæ Fluidi incumbentis.

Figure for Prop. XX.

Sit DHM superficies fundi, & AEI superficies superior fluidi. Superficiebus sphæricis innumeris BFK, CGL distinguatur fluidum in Orbes concentricos æqualiter crassos; & concipe vim gravitatis agere solummodo in superficiem superiorem Orbis cujusque, & æquales esse actiones in æquales partes superficierum omnium. Premitur ergo superficies suprema AE vi simplici gravitatis propriæ, qua & omnes Orbis supremi partes & superficies secunda BFK (per Prop. XIX.) premuntur. Premitur præterea superficies secunda BFK vi propriæ gravitatis, quæ addita vi priori facit pressionem duplam. Hac pressione & insuper vi propriæ gravitatis, id est pressione tripla, urgetur superficies tertia CGL. Et similiter pressione quadrupla urgetur superficies quarta, quintupla quinta & sic deinceps. Pressio igitur qua superficies unaquæque urgetur, non est ut quantitas solida fluidi incumbentis, sed ut numerus Orbium ad usque summitatem fluidi; & æquatur gravitati Orbis infimi multiplicatæ per numerum Orbium: hoc est gravitati solidi cujus ultima ratio ad Cylindrum præfinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio æqualitatis. Sustinet ergo superficies infima pondus cylindri præfiniti.   Q. E. D.   Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiæ a centro, ut & ubi Fluidum sursum rarius est, deorsum densius.   Q. E. D.

Corol. 1. Igitur fundum non urgetur a toto fluidi incumbentis pondere, sed eam solummodo ponderis partem sustinet quæ in Propositione describitur; pondere reliquo a fluidi figura fornicata sustentato.

Corol. 2. In æqualibus autem a centro distantiis eadem semper est pressionis quantitas, sive superficies pressa sit Horizonti parallela vel perpendicularis vel obliqua; sive fluidum a superficie pressa sursum continuatum surgat perpendiculariter secundum lineam rectam, vel serpit oblique per tortas cavitates & canales, easque regulares vel maxime irregulares, amplas vel angustissimas. Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.

Corol. 3. Eadem Demonstratione colligitur etiam (per Prop. XIX.) quod fluidi gravis partes nullum, ex pressione ponderis incumbentis, acquirunt motum inter se, si modo excludatur motus qui ex condensatione oriatur.

Corol. 4. Et propterea si aliud ejusdem gravitatis specificæ corpus, quod sit condensationis expers, submergatur in hoc fluido, id ex pressione ponderis incumbentis nullum acquiret motum: non descendet, non ascendet, non cogetur figuram suam mutare. Si Sphæricum est manebit sphæricum, non obstante pressione; si quadratum est manebit quadratum: idq; sive molle sit, sive fluidissimum; sive fluido libere innatet, sive fundo incumbat. Habet enim fluidi pars quælibet interna rationem corporis submersi, & par est ratio omnium ejusdem magnitudinis, figuræ & gravitatis specificæ submersorum corporum. Si corpus submersum servato pondere liquesceret & indueret formam fluidi; hoc, si prius ascenderet vel descenderet vel ex pressione figuram novam indueret, etiam nunc ascenderet vel descenderet vel figuram novam induere cogeretur: id adeo quia gravitas ejus cæteræque motuum causæ permanent. Atqui, per Cas. 5. Prop. XIX. jam quiesceret & figuram retineret. Ergo & prius.

Corol. 5. Proinde corpus quod specifice gravius est quam Fluidum sibi contiguum subsidebit, & quod specifice levius est ascendet, motumque & figuræ mutationem consequetur, quantum excessus ille vel defectus gravitatis efficere possit. Namque excessus ille vel defectus rationem habet impulsus, quo corpus, alias in æquilibrio cum fluidi partibus constitutum, urgetur; & comparari potest cum excessu vel defectu ponderis in lance alterutra libræ.

Corol. 6. Corporum igitur in fluidis constitutorum duplex est Gravitas: altera vera & absoluta, altera apparens, vulgaris & comparativa. Gravitas absoluta est vis tota qua corpus deorsum tendit: relativa & vulgaris est excessus gravitatis quo corpus magis tendit deorsum quam fluidum ambiens. Prioris generis Gravitate partes fluidorum & corporum omnium gravitant in locis suis: ideoque conjunctis ponderibus componunt pondus totius. Nam totum omne grave est, ut in vasis liquorum plenis experiri licet; & pondus totius æquale est ponderibus omnium partium, ideoque ex iisdem componitur. Alterius generis gravitate corpora non gravitant in locis suis, id est inter se collata non prægravant, sed mutuos ad descendendum conatus impedientia permanent in locis suis, perinde ac si gravia non essent. Quæ in Aere sunt & non prægravant, Vulgus gravia non judicat. Quæ prægravant vulgus gravia judicat, quatenus ab Aeris pondere non sustinentur. Pondera vulgi nihil aliud sunt quam excessus verorum ponderum supra pondus Aeris. Unde & vulgo dicuntur levia, quæ sunt minus gravia, Aerique prægravanti cedendo superiora petunt. Comparative levia sunt non vere, quia descendunt in vacuo. Sic & in Aqua, corpora, quæ ob majorem vel minorem gravitatem descendunt vel ascendunt, sunt comparative & apparenter gravia vel levia, & eorum gravitas vel levitas comparativa & apparens est excessus vel defectus quo vera eorum gravitas vel superat gravitatem aquæ vel ab ea superatur. Quæ vero nec prægravando descendunt, nec prægravanti cedendo ascendunt, etiamsi veris suis ponderibus adaugeant pondus totius, comparative tamen & in sensu vulgi non gravitant in aqua. Nam similis est horum Casuum Demonstratio.

Corol. 7. Quæ de gravitate demonstrantur, obtinent in aliis quibuscunque viribus centripetis.

Corol. 8. Proinde si Medium, in quo corpus aliquod movetur, urgeatur vel a gravitate propria, vel ab alia quacunq; vi centripeta, & corpus ab eadem vi urgeatur fortius: differentia virium est vis illa motrix, quam in præcedentibus Propositionibus ut vim centripetam consideravimus. Sin corpus a vi illa urgeatur levius, differentia virium pro vi centrifuga haberi debet.

Corol. 9. Cum autem fluida premendo corpora inclusa non mutent eorum Figuras externas, patet insuper, per Corollaria Prop. XIX. quod non mutabunt situm partium internarum inter se: proindeque, si Animalia immergantur, & sensatio omnis a motu partium oriatur; nec lædent corporibus immersis, nec sensationem ullam excitabunt, nisi quatenus hæc corpora a compressione ne condensari possunt. Et par est ratio cujuscunque corporum Systematis fluido comprimente circundati. Systematis partes omnes iisdem agitabuntur motibus, ac si in vacuo constituerentur, ac solam retinerent gravitatem suam comparativam, nisi quatenus fluidum vel motibus earum nonnihil resistat, vel ad easdem compressione conglutinandas requiratur.

Prop. XXI. Theor. XV.

Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a vi centripeta distantiis suis a centro reciproce proportionali deorsum trahantur: dico quod si distantiæ illæ sumantur continue proportionales, densitates fluidi in iisdem distantiis erunt etiam continue proportionales.