Philosophiae Naturalis Principia Mathematica
Figure for Prop. XXI.

Designet ATV fundum Sphæricum cui fluidum incumbit, S centrum, SA, SB, SC, SD, SE, &c. distantias continue proportionales. Erigantur perpendicula AH, BI, CK, DL, EM, &c. quæ sint ut densitates Medii in locis A, B, C, D, E; & specificæ gravitates in iisdem locis erunt ut AH ÷ AS, BI ÷ BS, CK ÷ CS, &c. vel, quod perinde est, ut AH ÷ AB, BI ÷ BC, CK ÷ CD &c. Finge primum has gravitates uniformiter continuari ab A ad B, a B ad C, a C ad D &c. factis per gradus decrementis in punctis B, C, D &c. Et hæ gravitates ductæ in altitudines AB, BC, CD &c. conficient pressiones AH, BI, CK, quibus fundum ATV (juxta Theorema XIV.) urgetur. Sustinet ergo particula A pressiones omnes AH, BI, CK, DL, pergendo in infinitum; & particula B pressiones omnes præter primam AH; & particula C omnes præter duas primas AH, BI; & sic deinceps: adeoque particulæ primæ A densitas AH est ad particulæ secundæ B densitatem BI ut summa omnium AH + BI + CK + DL, in infinitum, ad summam omnium BI + CK + DL, &c. Et BI densitas secundæ B, est ad CK densitatem tertiæ C, ut summa omnium BI + CK + DL, &c. ad summam omnium CK + DL, &c. Sunt igitur summæ illæ differentiis suis AH, BI, CK, &c. proportionales, atque adeo continue proportionales per hujus Lem. I. proindeq; differentiæ AH, BI, CK, &c. summis proportionales, sunt etiam continue proportionales. Quare cum densitates in locis A, B, C sint ut AH, BI, CK, &c. erunt etiam hæ continue proportionales. Pergatur per saltum, & (ex æquo) in distantiis SA, SC, SE continue proportionalibus, erunt densitates AH, CK, EM continue proportionales. Et eodem argumento in distantiis quibusvis continue proportionalibus SA, SD, SQ densitates AH, DL, QT erunt continue proportionales. Coeant jam puncta A, B, C, D, E, &c. eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales.   Q. E. D.

Figure for Corol.

Corol. Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t. Fiat area ZYmtZ ad aream datam YmhX ut area data EeqQ ad aream datam EeaA; & linea Zt producta abscindet lineam QT densitati proportionalem. Namque si lineæ SA, SE, SQ sunt continue proportionales, erunt areæ EeqQ, EeaA æquales, & inde areæ his proportionales YmtZ, XhmY etiam æquales & lineæ SX, SY, SZ id est AH, EM, QT continue proportionales, ut oportet. Et si lineæ SA, SE, SQ obtinent alium quemvis ordinem in serie continue proportionalium, lineæ AH, EM, QT, ob proportionales areas Hyperbolicas, obtinebunt eundem ordinem in alia serie quantitatum continue proportionalium.

Prop. XXII. Theor. XVI.

Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur: dico quod si distantiæ sumantur in progressione Musica, densitates Fluidi in his distantiis erunt in progressione Geometrica.

Figure for Prop. XXII.

Designet S centrum, & SA, SB, SC, SD, SE distantias in Progressione Geometrica. Erigantur perpendicula AH, BI, CK, &c. quæ sint ut Fluidi densitates in locis A, B, C, D, E, &c. & ipsius gravitates specificæ in iisdem locis erunt AH ÷ SAq., BI ÷ SBq., CK ÷ SCq., &c. Finge has gravitates uniformiter continuari, primam ab A ad B, secundam a B ad C, tertiam a C ad D, &c. Et hæ ductæ in altitudines AB, BC, CD, DE, &c. vel, quod perinde est, in distantias SA, SB, SC, &c. altitudinibus illis proportionales, conficient exponentes pressionum AH ÷ SA, BI ÷ SB, CK ÷ SC, &c. Quare cum densitates sint ut harum pressionum summæ, differentiæ densitatum AH - BI, BI - CK, &c. erunt ut summarum differentiæ AH ÷ SA, BI ÷ SB, CK ÷ SC, &c. Centro S Asymptotis SA, SX describatur Hyperbola quævis, quæ secet perpendicula AH, BI, CK, &c. in a, b, c; ut & perpendicula ad Asymptoton SX demissa Ht, Iu, Kw in h, i, k; & densitatum differentiæ tu, uw, &c. erunt ut AH ÷ SA, BI ÷ SB, &c. Et rectangula tu × th, uw × ui, &c. seu tp, uq, &c. ut AH × th ÷ SA ut BI × ui ÷ SB, &c. id est ut Aa, Bb &c. Est enim ex natura Hyperbolæ SA ad AH vel St, ut th ad Aa, adeoque AH × th ÷ SA æquale Aa. Et simili argumento est BI × ui ÷ SB æqualis Bb, &c. Sunt autem Aa, Bb, Cc, &c. continue proportionales, & propterea differentiis suis Aa - Bb, Bb - Cc, &c. proportionales; ideoque differentiis hisce proportionalia sunt rectangula tp, uq, &c. ut & summis differentiarum Aa - Cc vel Aa - Dd summæ rectangulorum tp + uq, vel tp + uq + wr. Sunto ejusmodi termini quam plurimi, & summa omnium differentiarum, puta Aa - Ff, erit summæ omnium rectangulorum, puta zthn, proportionalis. Augeatur numerus terminorum & minuantur distantiæ punctorum A, B, C, &c. in infinitum, & rectangula illa evadent æqualia areæ Hyperbolicæ zthn, adeoque huic areæ proportionalis est differentia Aa - Ff. Sumantur jam distantiæ quælibet, puta SA, SD, SF in Progressione Musica, & differentiæ Aa - Dd, Dd - Ff erunt æquales; & propterea differentiis hisce proportionales areæ thlx, xlnz æquales erunt inter se, & densitates St, Sx, Sz, id est AH, DL, FN, continue proportionales.   Q. E. D.

Corol. Hinc si dentur Fluidi densitates duæ quævis, puta AH & CK, dabitur area thkw harum differentiæ tw respondens; & inde invenietur densitas FN in altitudine quacunque SF, sumendo aream thnz ad aream illam datam thkw ut est differentia Aa - Ff ad differentiam Aa - Cc.

Scholium.

Simili argumentatione probari potest, quod si gravitas particularum Fluidi diminuatur in triplicata ratione distantiarum a centro; & quadratorum distantiarum SA, SB, SC, &c. reciproca (nempe SA cub. ÷ SAq., SA cub. ÷ SBq., SA cub. ÷ SCq.) sumantur in progressione Arithmetica; densitates AH, BI, CK, &c. erunt in progressione Geometrica. Et si gravitas diminuatur in quadruplicata ratione distantiarum, & cuborum distantiarum reciproca (puta SA qq. ÷ SA cub., SA qq. ÷ SB cub., SA qq. ÷ SC cub.) sumantur in progressione Arithmetica; densitates AH, BI, CK, &c. erunt in progressione Geometrica. Et sic in infinitum. Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiæ sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit. Si gravitas sit ut distantia, & quadrata distantiarum sint in progressione Arithmetica, densitates erunt in progressione Geometrica. Et sic in infinitum. Hæc ita se habent ubi Fluidi compressione condensati densitas est ut vis compressionis, vel, quod perinde est, spatium a Fluido occupatum reciproce ut hæc vis. Fingi possunt aliæ condensationis leges, ut quod cubus vis comprimentis sit ut quadrato-quadratum densitatis, seu triplicata ratio Vis æqualis quadruplicatæ rationi densitatis. Quo in casu, si gravitas est reciproce ut quadratum distantiæ a centro, densitas erit reciproce ut cubus distantiæ. Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiæ, densitas erit reciproce in sesquiplicata ratione distantiæ. Fingatur quod vis comprimens sit in duplicata ratione densitatis, & gravitas reciproce in ratione duplicata distantiæ, & densitas erit reciproce ut distantia. Casus omnes percurrere longum esset.

Prop. XXIII. Theor. XVII.

Particulæ viribus quæ sunt reciproce proportionales distantiis centrorum suorum se mutuo fugientes componunt Fluidum Elasticum, cujus densitas est compressioni proportionalis. Et vice versa, si Fluidi ex particulis se mutuo fugientibus compositi densitas sit ut compressio, vires centrifugæ particularum sunt reciproce proportionales distantiis centrorum.

Figure for Prop. XXIII.

Includi intelligatur Fluidum in spatio cubico ACE, dein compressione redigi in spatium cubicum minus ace; & particularum similem situm inter se in utroque spatio obtinentium distantiæ erunt ut cuborum latera AB, ab; & Medii densitates reciproce ut spatia continentia AB cub. & ab cub. In latere cubi majoris ABCD capiatur quadratum DP æquale lateri cubi minoris db; & ex Hypothesi, pressio qua quadratum DP urget Fluidum inclusum, erit ad pressionem qua latus illud quadratum db urget Fluidum inclusum, ut Medii densitates ad invicem, hoc est ab cub. ad AB cub. Sed pressio qua quadratum DB urget Fluidum inclusum, est ad pressionem qua quadratum DP urget idem Fluidum, ut quadratum DB ad quadratum DP, hoc est ut AB quad. ad ab quad. Ergo ex æquo pressio qua latus DB urget Fluidum, est ad pressionem qua latus db urget Fluidum, ut ab ad AB. Planis FGH, fgh per media cuborum ductis distinguatur Fluidum in duas partes, & hæ se mutuo prement iisdem viribus, quibus premuntur a planis AC, ac, hoc est in proportione ab ad AB: adeoque vires centrifugæ, quibus hæ pressiones sustinentur, sunt in eadem ratione. Ob eundem particularum numerum similemq; situm in utroque cubo, vires quas particulæ omnes secundum plana FGH, fgh exercent in omnes, sunt ut vires quas singulæ exercent in singulas. Ergo vires, quas singulæ exercent in singulas secundum planum FGH in cubo majore, sunt ad vires quas singulæ exercent in singulas secundum planum fgh in cubo minore ut ab ad AB, hoc est reciproce ut distantiæ particularum ad invicem.   Q. E. D.

Et vice versa, si vires particularum singularum sunt reciproce ut distantiæ, id est reciproce ut cuborum latera AB, ab; summæ virium erunt in eadem ratione, & pressiones laterum DB, db ut summæ virium; & pressio quadrati DP ad pressionem lateris DB ut ab quad. ad AB quad. Et ex æquo pressio quadrati DP ad pressionem lateris db ut ab cub. ad AB cub. id est vis compressionis ad vim compressionis ut densitas ad densitatem.   Q. E. D.

Scholium.

Simili argumento si particularum vires centrifugæ sint reciproce in duplicata ratione distantiarum inter centra, cubi virium comprimentium erunt ut quadrato-quadrata densitatum. Si vires centrifugæ sint reciproce in triplicata vel quadruplicata ratione distantiarum, cubi virium comprimentium erunt ut quadrato-cubi vel cubo-cubi densitatum. Et universaliter, si D ponatur pro distantia, & E pro densitate Fluidi compressi, & vires centrifugæ sint reciproce ut distantiæ dignitas quælibet Dn, cujus index est numerus n; vires comprimentes erunt ut latera cubica Dignitatis En + 2, cujus index est numerus n + 2; & contra. Intelligenda vero sunt hæc omnia de particularum Viribus centrifugis quæ terminantur in particulis proximis, aut non longe ultra diffunduntur. Exemplum habemus in corporibus Magneticis. Horum Virtus attractiva terminatur fere in sui generis corporibus sibi proximis. Magnetis virtus per interpositam laminam ferri contrahitur, & in lamina fere terminatur. Nam corpora ulteriora non tam a Magnete quam a lamina trahuntur. Ad eundem modum si particulæ fugant alias sui generis particulas sibi proximas, in particulas autem remotiores virtutem nullam nisi forte per particulas intermedias virtute illa auctas exerceant, ex hujusmodi particulis componentur Fluida de quibus actum est in hac propositione. Quod si particulæ cujusq; virtus in infinitum propagetur, opus erit vi majori ad æqualem condensationem majoris quantitatis Fluidi. Ut si particula unaquæq; vi sua, quæ sit reciproce ut distantia locorum a centro suo, fugat alias omnes particulas in infinitum; Vires quibus Fluidum in vasis similibus æqualiter comprimi & condensari possit, erunt ut quadrata diametrorum vasorum: ideoque vis, qua Fluidum in eodem vase comprimitur, erit reciproce ut latus cubicum quadrato-cubi densitatis. An vero Fluida Elastica ex particulis se mutuo fugantibus constent, Quæstio Physica est. Nos proprietatem Fluidorum ex ejusmodi particulis constantium Mathematice demonstravimus, ut Philosophis ansam præbeamus Quæstionem illam tractandi.



SECT. VI.

De Motu & resistentia Corporum Funependulorum.

Prop. XXIV. Theor. XVIII.

Quantitates materiæ in corporibus funependulis, quorum centra oscillationum a centro suspensionis æqualiter distant, sunt in ratione composita ex ratione ponderum & ratione duplicata temporum oscillationum in vacuo.

Nam velocitas, quam data vis in data materia dato tempore generare potest, est ut vis & tempus directe, & materia inverse. Quo major est vis vel majus tempus vel minor materia, eo major generabitur velocitas. Id quod per motus Legem secundam manifestum est. Jam vero si pendula ejusdem sint longitudinis, vires motrices in locis a perpendiculo æqualiter distantibus sunt ut pondera: ideoque si corpora duo oscillando describant arcus æquales, & arcus illi dividantur in partes æquales; cum tempora quibus corpora describant singulas arcuum partes correspondentes sint ut tempora oscillationum totarum, erunt velocitates ad invicem in correspondentibus oscillationum partibus, ut vires motrices & tota oscillationum tempora directe & quantitates materiæ reciproce: adeoque quantitates materiæ ut vires & oscillationum tempora directe & velocitates reciproce. Sed velocitates reciproce sunt ut tempora, atque adeo tempora directe & velocitates reciproce sunt ut quadrata temporum, & propterea quantitates materiæ sunt ut vires motrices & quadrata temporum, id est ut pondera & quadrata temporum.   Q. E. D.

Corol. 1. Ideoque si tempora sunt æqualia, quantitates materiæ in singulis corporibus erunt ut pondera.

Corol. 2. Si pondera sunt æqualia, quantitates materiæ erunt ut quadrata temporum.

Corol. 3. Si quantitates materiæ æquantur, pondera erunt reciproce ut quadrata temporum.

Corol. 4. Unde cum quadrata temporum cæteris paribus sint ut longitudines pendulorum; si & tempora & quantitates materiæ æqualia sunt, pondera erunt ut longitudines pendulorum.

Corol. 5. Et universaliter, quantitas materiæ pendulæ est ut pondus & quadratum temporis directe, & longitudo penduli inverse.

Corol. 6. Sed & in Medio non resistente quantitas Materiæ pendulæ est ut pondus comparativum & quadratum temporis directe & longitudo penduli inverse. Nam pondus comparativum est vis motrix corporis in Medio quovis gravi, ut supra explicui; adeoque idem præstat in tali Medio non resistente atque pondus absolutum in vacuo.

Corol. 7. Et hinc liquet ratio tum comparandi corpora inter se, quoad quantitatem materiæ in singulis, tum comparandi pondera ejusdem corporis in diversis locis, ad cognoscendam variationem gravitatis. Factis autem experimentis quam accuratissimis inveni semper quantitatem materiæ in corporibus singulis eorum ponderi proportionalem esse.

Prop. XXV. Theor. XIX.

Corpora Funependula quæ in Medio quovis resistuntur in ratione momentorum temporis, quæque in ejusdem gravitatis specificæ Medio non resistente moventur, oscillationes in Cycloide eodem tempore peragunt, & arcuum partes proportionales simul describunt.

Figure for Prop. XXV.

Sit AB Cycloidis arcus, quem corpus D tempore quovis in Medio non resistente oscillando describit. Bisecetur idem in C, ita ut C sit infimum ejus punctum; & erit vis acceleratrix qua corpus urgetur in loco quovis D vel d vel E ut longitudo arcus CD vel Cd vel CE. Exponatur vis illa per eundem arcum; & cum resistentia sit ut momentum temporis, adeoque detur, exponatur eadem per datam arcus Cycloidis partem CO, & sumatur arcus Od in ratione ad arcum CD quam habet arcus OB ad arcum CB: & vis qua corpus in d urgetur in Medio resistente, cum sit excessus vis Cd supra resistentiam CO, exponetur per arcum Od, adeoque erit ad vim qua corpus D urgetur in Medio non resistente, in loco D, ut arcus Od ad arcum CD; & propterea etiam in loco B ut arcus OB ad arcum CB. Proinde si corpora duo, D, d exeant de loco B & his viribus urgeantur: cum vires sub initio sint ut arcus CB & OB, erunt velocitates primæ & arcus primo descripti in eadem ratione. Sunto arcus illi BD & Bd, & arcus reliqui CD, Od erunt in eadem ratione. Proinde vires ipsis CD, Od proportionales manebunt in eadem ratione ac sub initio, & propterea corpora pergent arcus in eadem ratione simul describere. Igitur vires & velocitates & arcus reliqui CD, Od semper erunt ut arcus toti CD, OB, & propterea arcus illi reliqui simul describentur. Quare corpora duo D, d simul pervenient ad loca C & O, alterum quidem in Medio non resistente ad locum C, & alterum in Medio resistente ad locum O. Cum autem velocitates in C & O sint ut arcus CB & OB; erunt arcus quos corpora ulterius pergendo simul describunt, in eadem ratione. Sunto illi CE & Oe. Vis qua corpus D in Medio non resistente retardatur in E est ut CE, & vis qua corpus d in Medio resistente retardatur in e est ut summa vis Ce & resistentiæ CO, id est ut Oe; ideoque vires, quibus corpora retardantur, sunt ut arcubus CE, Oe proportionales arcus CB, OB; proindeque velocitates in data illa ratione retardatæ manent in eadem illa data ratione. Velocitates igitur & arcus iisdem descripti semper sunt ad invicem in data illa ratione arcuum CB & OB; & propterea si sumantur arcus toti AB, aB in eadem ratione, corpora D, d simul describent hos arcus, & in locis A & a motum omnem simul amittent. Isochronæ sunt igitur oscillationes totæ, & arcubus totis BA, BE proportionales sunt arcuum partes quælibet BD, Bd vel BE, Be quæ simul describuntur.   Q. E. D.

Corol. Igitur motus velocissimus in Medio resistente non incidit in punctum infimum C, sed reperitur in puncto illo O, quo arcus totus descriptus aB bisecatur. Et corpus subinde pergendo ad a, iisdem gradibus retardatur quibus antea accelerabatur in descensu suo a B ad O.

Prop. XXVI. Theor. XX.

Corporum Funependulorum, quæ resistuntur in ratione velocitatum, oscillationes in Cycloide sunt Isochronæ.

Nam si corpora duo a centris suspensionum æqualiter distantia, oscillando describant arcus inæquales, & velocitates in arcuum partibus correspondentibus sint ad invicem ut arcus toti; resistentiæ velocitatibus proportionales erunt etiam ad invicem ut iidem arcus. Proinde si viribus motricibus a gravitate oriundis, quæ sint ut iidem arcus auferantur, conferantur vel addantur hæ resistentiæ, erunt differentiæ vel summæ ad invicem in eadem arcuum ratione: cumque velocitatum incrementa vel decrementa sint ut hæ differentiæ vel summæ, velocitates semper erunt ut arcus toti: Igitur velocitates, si sint in aliquo casu ut arcus toti, manebunt semper in eadem ratione. Sed in principio motus, ubi corpora incipiunt descendere & arcus illos describere, vires, cum sint arcubus proportionales, generabunt velocitates arcubus proportionales. Ergo velocitates semper erunt ut arcus toti describendi, & propterea arcus illi simul describentur.   Q. E. D.

Prop. XXVII. Theor. XXI.

Si corpora Funependula resistuntur in duplicata ratione velocitatum, differentiæ inter tempora oscillationum in Medio resistente ac tempora oscillationum in ejusdem gravitatis specificæ Medio non resistente, erunt arcubus oscillando descriptis proportionales, quam proxime.

Nam pendulis æqualibus in Medio resistente describantur arcus inæquales A, B; resistentia corporis in arcu A, erit ad resistentiam corporis in parte correspondente arcus B, in duplicata ratione velocitatum, id est ut A quad. ad B quad. quamproxime. Si resistentia in arcu B esset ad resistentiam in arcu A ut rectangulum AB ad A quad. tempora in arcubus A & B forent æqualia per Propositionem superiorem. Ideoque resistentia A quad. in arcu A, vel AB in arcu B, efficit excessum temporis in arcu A supra tempus in Medio non resistente; & resistentia BB efficit excessum temporis in arcu B supra tempus in Medio non resistente. Sunt autem excessus illi ut vires efficientes AB & BB quam proxime, id est ut arcus A & B.   Q. E. D.

Corol. 1. Hinc ex oscillationum temporibus, in Medio resistente in arcubus inæqualibus factarum, cognosci possunt tempora oscillationum in ejusdem gravitatis specificæ Medio non resistente. Nam si verbi gratia arcus sit altero duplo major, differentia temporum erit ad excessum temporis in arcu minore supra tempus in Medio non resistente, ut differentia arcuum ad arcum minorem.

Corol. 2. Oscillationes breviores sunt magis Isochronæ, & brevissimæ iisdem temporibus peraguntur ac in Medio non resistente, quam proxime. Earum vero quæ in majoribus arcubus fiunt, tempora sunt paulo majora, propterea quod resistentia in descensu corporis qua tempus producitur, major sit pro ratione longitudinis in descensu descriptæ, quam resistentia in ascensu subsequente qua tempus contrahitur. Sed & tempus oscillationum tam brevium quam longarum nonnihil produci videtur per motum Medii. Nam corpora tardescentia paulo minus resistuntur pro ratione velocitatis, & corpora accelerata paulo magis quam quæ uniformiter progrediuntur: id adeo quia Medium, eo quem a corporibus accepit motu, in eandem plagam pergendo, in priore casu magis agitatur, in posteriore minus; ac proinde magis vel minus cum corporibus motis conspirat. Pendulis igitur in descensu magis resistit, in ascensu minus quam pro ratione velocitatis, & ex utraque causa tempus producitur.

Prop. XXVIII. Theor. XXII.

Si corpus Funependulum in Cycloide oscillans resistitur in ratione momentorum temporis, erit ejus resistentia ad vim gravitatis ut excessus arcus descensu toto descripti supra arcum ascensu subsequente descriptum, ad penduli longitudinem duplicatam.

Designet BC arcum descensu descriptum, Ca arcum ascensu descriptum, & Aa differentiam arcuum: & stantibus quæ in Propositione XXV. constructa & demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D, ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiæ illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO; id est (si arcus duplicentur) ut Cycloidis totius arcus, seu dupla penduli longitudo, ad arcum Aa.   Q. E. D.

Prop. XXIX. Prob. VII.

Posito quod corpus in Cycloide oscillans resistitur in duplicata ratione velocitatis: invenire resistentiam in locis singulis.

Figure for Prop. XXIX.

Sit Ba (Fig. Prop. XXV.) arcus oscillatione integra descriptus, sitque C infimum Cycloidis punctum, & CZ semissis arcus Cycloidis totius, longitudini Penduli æqualis; & quæratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC. Dein perpendiculo MN abscindatur area Hyperbolica PINM quæ sit ad aream Hyperbolicam PIEQ ut arcus CZ ad arcum BC descensu descriptum. Et si perpendiculo RG abscindatur area Hyperbolica PIGR, quæ sit ad aream PIEQ ut arcus quilibet CD ad arcum BC descensu toto descriptum: erit resistentia in loco D ad vim gravitatis, ut area {OR ÷ OQ} IEF - IGH ad aream PIENM.

Nam cum vires a gravitate oriundæ quibus corpus in locis Z, B, D, a urgetur, sint ut arcus CZ, CB, CD, Ca, & arcus illi sint ut areæ PINM, PIEQ, PIGR, PITC; exponatur tum arcus tum vires per has areas respective. Sit insuper Dd spatium quam minimum a corpore descendente descriptum, & exponatur idem per aream quam minimam RGgr parallelis RG, rg comprehensam; & producatur rg ad h, ut sint GHhg, & RGgr contemporanea arearum IGH, PIGR decrementa. Et areæ {OR ÷ OQ} IEF - IGH incrementum GHhg - {Rr ÷ OQ} IEF, seu Rr × HG - {Rr ÷ OQ} IEF, erit ad areæ PIGR decrementum RGgr seu Rr × RG, ut HG - {IEF ÷ OQ} ad RG; adeoque ut OR × HG - {OR ÷ OQ} IEF ad OR × GR seu OP × PI: hoc est (ob æqualia OR × HG, OR × HR - OR × GR, ORHK - OPIK, PIHR & PIGR + IGH) ut PIGR + IGH - {OR ÷ OQ} IEF ad OPIK. Igitur si area {OR ÷ OQ} IEF - IGH dicatur Y, atque areæ PIGR decrementum RGgr detur, erit incrementum areæ Y ut PIGR - Y.

Quod si V designet vim a gravitate oriundam arcui describendo CD proportionalem, qua corpus urgetur in D; & R pro resistentia ponatur: erit V - R vis tota qua corpus urgetur in D, adeoque ut incrementum velocitatis in data temporis particula factum. Est autem resistentia R (per Hypothesin) ut quadratum velocitatis, & inde (per Lem. II.) incrementum resistentiæ ut velocitas & incrementum velocitatis conjunctim, id est ut spatium data temporis particula descriptum & V - R conjunctim; atque adeo, si momentum spatii detur, ut V - R; id est, si pro vi V scribatur ejus exponens PIGR, & resistentia R exponatur per aliam aliquam aream Z, ut PIGR - Z.

Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areæ Y & Z simul incipiant & sub initio æquales sint, hæ per additionem æqualium momentorum pergent esse æquales, & æqualibus itidem momentis subinde decrescentes simul evanescent. Et vicissim, si simul incipiunt & simul evanescunt, æqualia habebunt momenta & semper erunt æquales: id adeo quia si resistentia Z augeatur, velocitas una cum arcu illo Ca, qui in ascensu corporis describitur, diminuetur; & puncto in quo motus omnis una cum resistentia cessat propius accedente ad punctum C, resistentia citius evanescet quam area Y. Et contrarium eveniet ubi resistentia diminuitur.

Jam vero area Z incipit desinitque ubi resistentia nulla est, hoc est, in principio & fine motus, ubi arcus CD, CD arcubus CB & Ca æquantur, adeoque ubi recta RG incidit in rectas QE & CT. Et area Y seu {OR ÷ OQ} IEF - IGH incipit desinitque ubi nulla est, adeoque ubi {OR ÷ OQ} IEF & IGH æqualia sunt: hoc est (per constructionem) ubi recta RG incidit in rectam QE & CT. Proindeque areæ illæ simul incipiunt & simul evanescunt, & propterea semper sunt æquales. Igitur area {OR ÷ OQ} IEF - IGH æqualis est areæ Z, per quam resistentia exponitur, & propterea est ad aream PINM per quam gravitas exponitur, ut resistentia ad gravitatem.   Q. E. D.

Corol. 1. Est igitur resistentia in loco infimo C ad vim gravitatis, ut area {OP ÷ OQ} IEF ad aream PINM.

Corol. 2. Fit autem maxima, ubi area PIHR est ad aream IEF ut OR ad OQ. Eo enim in casu momentum ejus (nimirum PIGR - Y) evadit nullum.

Corol. 3. Hinc etiam innotescit velocitas in locis singulis: quippe quæ est in dimidiata ratione resistentiæ, & ipso motus initio æquatur velocitati corporis in eadem Cycloide absque omni resistentia oscillantis.

Cæterum ob difficilem calculum quo resistentia & velocitas per hanc Propositionem inveniendæ sunt, visum est Propositionem sequentem subjungere, quæ & generalior sit & ad usus Philosophicos abunde satis accurata.

Prop. XXX. Theor. XXIII.

Si recta aB æqualis sit Cycloidis arcui quem corpus oscillando describit, & ad singula ejus puncta D erigantur perpendicula DK, quæ sint ad longitudinem Penduli ut resistentia corporis in arcus punctis correspondentibus ad vim gravitatis: dico quod differentia inter arcum descensu toto descriptum, & arcum ascensu toto subsequente descriptum, ducta in arcuum eorundem semisummam, æqualis erit areæ BKaB a perpendiculis omnibus DK occupatæ, quamproxime.

Figure for Prop. XXX.

Exponatur enim tum Cycloidis arcus oscillatione integra descriptus, per rectam illam sibi æqualem aB, tum arcus qui describeretur in vacuo per longitudinem AB. Bisecetur AB in C, & punctum C repræsentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis. Exponatur igitur vis illa per longitudinem CD, & vis gravitatis per longitudinem penduli; & si in DE capiatur DK in ea ratione ad longitudinem penduli quam habet resistentia ad gravitatem, erit DK exponens resistentiæ. Centro C & intervallo CA vel CB construatur semicirculus, BEeA. Describat autem corpus tempore quam minimo spatium Dd, & erectis perpendiculis DE, de circumferentiæ occurrentibus in E & e, erunt hæc ut velocitates quas corpus in vacuo, descendendo a puncto B, acquireret in locis D & d. Patet hoc per Prop. LII. Lib. I. Exponantur itaq; hæ velocitates per perpendicula illa DE, de; sitque DF velocitas quam acquirit in D cadendo de B in Medio resistente. Et si centro C & intervallo CF describatur circulus FfM occurrens rectis de & AB in f & M, erit M locus ad quem deinceps absque ulteriore resistentia ascenderet, & df velocitas quam acquireret in d. Unde etiam si Fg designet velocitatis momentum quod corpus D, describendo spatium quam minimum Dd, ex resistentia Medii amittit, & sumatur CN æqualis Cg: erit N locus ad quem corpus deinceps absque ulteriore resistentia ascenderet, & MN erit decrementum ascensus ex velocitatis illius amissione oriundum. Ad df demittatur perpendiculum Fm, & velocitatis DF decrementum fg a resistentia DK genitum, erit ad velocitatis ejusdem incrementum fma vi CD genitum, ut vis generans DK ad vim generantem CD. Sed & ob similia triangula Fmf, Fhg, FDC, est fm ad Fm seu Dd, ut CD ad DF, & ex æquo Fg ad Dd ut DK ad DF. Item Fg ad Fh ut CF ad DF; & ex æquo perturbate Fh seu MN ad Dd ut DK ad CF. Sumatur DR ad ½aB ut DK ad CF, & erit MN ad Dd ut DR ad ½aB; ideoque summa omnium MN × ½aB, id est Aa × ½aB, æqualis erit summæ omnium Dd × DR, id est areæ BRrSa, quam rectangula omnia Dd × DR seu DRrd componunt. Bisecentur Aa & aB in P & O, & erit ½aB seu OB æqualis CP, ideoque DR est ad DK ut CP ad CF vel CM, & divisim KR ad DR ut PM ad CP. Ideoque cum punctum M, ubi corpus versatur in medio oscillationis loco O, incidat circiter in punctum P, & priore oscillationis parte versetur inter A & P, posteriore autem inter P & a, utroque in casu æqualiter a puncto P in partes contrarias errans: punctum K circa medium oscillationis locum, id est e regione puncti O, puta in V, incidet in punctum R; in priore autem oscillationis parte jacebit inter R & E, & in posteriore inter R & D, utroque in casu æqualiter a puncto R in partes contrarias errans. Proinde area quam linea KR describit, priore oscillationis parte jacebit extra aream BRSa, posteriore intra eandem, idque dimensionibus hinc inde propemodum æquatis inter se; & propterea in casu priore addita areæ BRSa, in posteriore eidem subducta, relinquet aream BKTa areæ BRSa æqualem quam proxime. Ergo rectangulum Aa × ½aB seu AaO, cum sit æquale areæ BRSa, erit etiam æquale areæ BKTa quamproxime. Q. E. D.

Corol. Hinc ex lege resistentiæ & arcuum Ca, CB differentia Aa, colligi potest proportio resistentiæ ad gravitatem quam proxime.

Nam si uniformis sit resistentia DK, figura aBKkT rectangulum erit sub Ba & DK, & inde rectangulum sub ½Ba & Aa æqualis erit rectangulo sub Ba & DK, & DK æqualis erit ½Aa. Quare cum DK sit exponens resistentiæ, & longitudo penduli exponens gravitatis, erit resistentia ad gravitatem ut ½Aa ad longitudinem Penduli; omnino ut in Propositione XXVIII. demonstratum est.

Si resistentia sit ut velocitas, Figura aBKkT Ellipsis erit quam proxime. Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE. Proinde cum Ba in Medio resistente & BA in Medio non resistente, æqualibus circiter temporibus describantur; adeoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA; erit velocitas DK in Medio resistente ut circuli vel Ellipseos super diametro Ba descripti ordinatim applicata; adeoque figura BKVTa Ellipsis, quam proxime. Cum resistentia velocitati proportionalis supponatur, sit OV exponens resistentiæ in puncto Medio O; & Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique æquale rectangulum Aa × BO, æquabit quam proxime. Est igitur Aa × BO ad OV × BO ut area Ellipseos hujus ad OV × BO: id est Aa ad OV ut area semicirculi, ad quadratum radii sive ut 11 and 7 circiter: Et propterea: 7/11Aa ad longitudinem penduli ut corporis oscillantis resistentia in O ad ejusdem gravitatem.

Quod si resistentia DK sit in duplicata ratione velocitatis, figura BKTVa Parabola erit verticem habens V & axem OV, ideoque æqualis erit duabus tertiis partibus rectanguli sub Ba & OV quam proxime. Est igitur rectangulum sub ½Ba & Aa æquale rectangulo sub ⅔Ba & OV, adeoque OV æqualis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.

Atque has conclusiones in rebus practicis abunde satis accuratas esse censeo. Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, hæc si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem æquabitur quam proxime.

Prop. XXXI. Theor. XXIV.

Si corporis oscillantis resistentia in singulis arcuum descriptorum partibus proportionalibus augeatur vel minuatur in data ratione; differentia inter arcum descensu descriptum & arcum subsequente ascensu descriptum, augebitur vel diminuetur in eadem ratione quamproxime.

Oritur enim differentia illa ex retardatione Penduli per resistentiam Medii, adeoque est ut retardatio tota eique proportionalis resistentia retardans. In superiore Propositione rectangulum sub recta ½aB & arcuum illorum CB, Ca differentia Aa, æqualis erat areæ BKT. Et area illa, si maneat longitudo aB, augetur vel diminuitur in ratione ordinatim applicatarum DK; hoc est in ratione resistentiæ, adeoque est ut longitudo aB & resistentia conjunctim. Proindeque rectangulum sub Aa & ½aB est ut aB & resistentia conjunctim, & propterea Aa ut resistentia.   Q. E. D.

Corol. 1. Unde si resistentia sit ut velocitas, differentia arcuum in eodem Medio erit ut arcus totus descriptus: & contra.

Corol. 2. Si resistentia sit in duplicata ratione velocitatis, differentia illa erit in duplicata ratione arcus totius; & contra.

Corol. 3. Et universaliter, si resistentia sit in triplicata vel alia quavis ratione velocitatis, differentia erit in eadem ratione arcus totius; & contra.

Corol. 4. Et si resistentia sit partim in ratione simplici velocitatis, partim in ejusdem ratione duplicata, differentia erit partim in ratione arcus totius & partim in ejus ratione duplicata; & contra. Eadem erit lex & ratio resistentiæ pro velocitate, quæ est differentiæ illius pro longitudine arcus.

Corol. 5. Ideoque si, pendulo inæquales arcus successive describente, inveniri potest ratio incrementi ac decrementi resistentiæ hujus pro longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi resistentiæ pro velocitate majore vel minore.



SECT. VII.

De Motu Fluidorum & resistentia Projectilium.

Prop. XXXII. Theor. XXV.

Si corporum Systemata duo ex æquali particularum numero constent & particulæ correspondentes similes sint, singulæ in uno Systemate singulis in altero, ac datam habeant rationem densitatis ad invicem, & inter se temporibus proportionalibus similiter moveri incipiant, (eæ inter se quæ in uno sunt Systemate & eæ inter se quæ sunt in altero) & si non tangant se mutuo quæ in eodem sunt Systemate, nisi in momentis reflexionum, neque attrahant vel fugent se mutuo, nisi viribus acceleratricibus quæ sint ut particularum correspondentium diametri inverse & quadrata velocitatum directe: dico quod Systematum particulæ ille pergent inter se temporibus proportionalibus similiter moveri; & contra.

Corpora similia temporibus proportionalibus inter se similiter moveri dico, quorum situs ad invicem in fine temporum illorum semper sunt similes: puta si particulæ unius Systematis cum alterius particulis correspondentibus conferantur. Unde tempora erunt proportionalia, in quibus similes & proportionales figurarum similium partes a particulis correspondentibus describuntur. Igitur si duo sint ejusmodi Systemata, particulæ correspondentes, ob similitudinem incæptorum motuum, pergent similiter moveri usque donec sibi mutuo occurrant. Nam si nullis agitantur viribus, progredientur uniformiter in lineis rectis per motus Leg. I. Si viribus aliquibus se mutuo agitant, & vires illæ sint ut particularum correspondentium diametri inverse & quadrata velocitatum directe; quoniam particularum situs sunt similes & vires proportionales, vires totæ quibus particulæ correspondentes agitantur, ex viribus singulis agitantibus (per Legum Corollarium secundum) compositæ, similes habebunt determinationes, perinde ac si centra inter particulas similiter sita respicerent; & erunt vires illæ totæ ad invicem ut vires singulæ componentes, hoc est ut correspondentium particularum diametri inverse, & quadrata velocitatum directe: & propterea efficient ut correspondentes particulæ figuras similes describere pergant. Hæc ita se habebunt per Corol. 1. 2, & 7. Prop. IV. si modo centra illa quiescant. Sin moveantur, quoniam ob translationum similitudinem, similes manent eorum situs inter Systematum particulas; similes inducentur mutationes in figuris quas particulæ describunt. Similes igitur erunt correspondentium & similium particularum motus usque ad occursus suos primos, & propterea similes occursus, & similes reflexiones, & subinde (per jam ostensa) similes motus inter se, donec iterum in se mutuo inciderint, & sic deinceps in infinitum. Q. E. D.

Corol. 1. Hinc si corpora duo quævis, quæ similia sint & ad Systematum particulas correspondentes similiter sita, inter ipsas temporibus proportionalibus similiter moveri incipiant, sintque eorum densitates ad invicem ut densitates correspondentium particularum: hæc pergent temporibus proportionalibus similiter moveri. Est enim eadem ratio partium majorum Systematis utriusque atque particularum.

Corol. 2. Et si similes & similiter positæ Systematum partes omnes quiescant inter se: & earum duæ, quæ cæteris majores sint, & sibi mutuo in utroque Systemate correspondeant, secundum lineas similiter sitas simili cum motu utcunque moveri incipiant: hæ similes in reliquis systematum partibus excitabunt motus, & pergent inter ipsas temporibus proportionalibus similiter moveri; atque adeo spatia diametris suis proportionalia describere.

Prop. XXXIII. Theor. XXVI.

Iisdem positis, dico quod Systematum partes majores resistuntur in ratione composita ex duplicata ratione velocitatum suarum & duplicata ratione diametrorum & ratione densitatis partium Systematum.

Nam resistentia oritur partim ex viribus centripetis vel centrifugis quibus particulæ systematum se mutuo agitant, partim ex occursibus & reflexionibus particularum & partium majorum. Prioris autem generis resistentiæ sunt ad invicem ut vires totæ motrices a quibus oriuntur, id est ut vires totæ acceleratrices & quantitates materiæ in partibus correspondentibus; hoc est (per Hypothesin) ut quadrata velocitatum directe & distantiæ particularum correspondentium inverse & quantitates materiæ in partibus correspondentibus directe: ideoque (cum distantiæ particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulæ vel partis in systemate priore ad diametrum particulæ vel partis correspondentis in altero, & quantitates materiæ sint ut densitates partium & cubi diametrorum) resistentiæ sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum.   Q. E. D.   Posterioris generis resistentiæ sunt ut reflexionum correspondentium numeri & vires conjunctim. Numeri autem reflexionum sunt ad invicem ut velocitates partium correspondentium directe, & spatia inter eorum reflexiones inverse. Et vires reflexionum sunt ut velocitates & magnitudines & densitates partium correspondentium conjunctim; id est ut velocitates & diametrorum cubi & densitates partium. Et conjunctis his omnibus rationibus, resistentiæ partium correspondentium sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium conjunctim.   Q. E. D.

Corol. 1. Igitur si systemata illa sint Fluida duo Elastica ad modum Aeris, & partes eorum quiescant inter se: corpora autem duo similia & partibus fluidorum quoad magnitudinem & densitatem proportionalia, & inter partes illas similiter posita, secundum lineas similiter positas utcunque projiciantur; vires autem motrices, quibus particulæ Fluidorum se mutuo agitant, sint ut corporum projectorum diametri inverse, & quadrata velocitatum directe: corpora illa temporibus proportionalibus similes excitabunt motus in Fluidis, & spatia similia ac diametris suis proportionalia describent.

Corol. 2. Proinde in eodem Fluido projectile velox resistitur in duplicata ratione velocitatis quam proxime. Nam si vires, quibus particulæ distantes se mutuo agitant, augerentur in duplicata ratione velocitatis, projectile resisteretur in eadem ratione duplicata accurate; ideoque in Medio, cujus partes ab invicem distantes sese viribus nullis agitant, resistentia est in duplicata ratione velocitatis accurate. Sunto igitur Media tria A, B, C ex partibus similibus & æqualibus & secundum distantias æquales regulariter dispositis constantia. Partes Mediorum A & B fugiant se mutuo viribus quæ sint ad invicem ut T & V, illæ Medii C ejusmodi viribus omnino destituantur. Et si corpora quatuor æqualia D, E, F, G in his Mediis moveantur, priora duo D & E in prioribus duobus A & B, & altera duo F & G in tertio C; sitque velocitas corporis D ad velocitatem corporis E, & velocitas corporis F ad velocitatem corporis G, in dimidiata ratione virium T ad vires V; resistentia corporis D erit ad resistentiam corporis E, & resistentia corporis F ad resistentiam corporis G in velocitatum ratione duplicata; & propterea resistentia corporis D erit ad resistentiam corporis F ut resistentia corporis E ad resistentiam corporis G. Sunto corpora D & F æquivelocia ut & corpora E & G; & augendo velocitates corporum D & F in ratione quacunque, ac diminuendo vires particularum Medii B in eadem ratione duplicata, accedet Medium B ad formam & conditionem Medii C pro lubitu, & idcirco resistentiæ corporum æqualium & æquivelocium E & G in his Mediis, perpetuo accedent ad æqualitatem, ita ut earum differentia evadat tandem minor quam data quævis. Proinde cum resistentiæ corporum D & F sint ad invicem ut resistentiæ corporum E & G, accedent etiam hæ similiter ad rationem æqualitatis. Corporum igitur D & F, ubi velocissime moventur, resistentiæ sunt æquales quam proxime: & propterea cum resistentia corporis F sit in duplicata ratione velocitatis, erit resistentia corporis D in eadem ratione quamproxime.   Q. E. D.

Corol. 3. Igitur corporis in Fluido quovis Elastico velocissime moventis eadem fere est resistentia ac si partes Fluidi viribus suis centrifugis destituerentur, seque mutuo non fugerent: si modo Fluidi vis Elastica ex particularum viribus centrifugis oriatur.

Corol. 4. Proinde cum resistentiæ similium & æquivelocium corporum, in Medio cujus partes distantes se mutuo non fugiunt, sint ut quadrata diametrorum, sunt etiam æquivelocium & celerrime moventium corporum resistentiæ in Fluido Elastico ut quadrata diametrorum quam proxime.

Corol. 5. Et cum corpora similia, æqualia & æquivelocia, in Mediis ejusdem densitatis, quorum particulæ se mutuo non fugiunt, sive particulæ illæ sint plures & minores, sive pauciores & majores, in æqualem materiæ quantitatem temporibus æqualibus inpingant, eique æqualem motus quantitatem imprimant, & vicissim (per motus Legem tertiam) æqualem ab eadem reactionem patiantur, hoc est, æqualiter resistantur: manifestum est etiam quod in ejusdem densitatis Fluidis Elasticis, ubi velocissime moventur, æquales sint eorum resistentiæ quam proxime; sive Fluida illa ex particulis crassioribus constent, sive ex omnium subtilissimis constituantur. Ex Medii subtilitate resistentia projectilium celerrime motorum non multum diminuitur.

Corol. 6. Cum autem particulæ Fluidorum, propter vires quibus se mutuo fugiunt, moveri nequeant quin simul agitent particulas alias in circuitu, atque adeo difficilius moveantur inter se quam si viribus istis destituerentur; & quo majores sint earum vires centrifugæ, eo difficilius moveantur inter se: manifestum esse videtur quod projectile in tali Fluido eo difficilius movebitur, quo vires illæ sunt intensiores; & propterea si corporis velocissimi in superioribus Corollariis velocitas diminuatur, quoniam resistentia diminueretur in duplicata ratione velocitatis, si modo vires particularum in eadem ratione duplicata diminuerentur; vires autem nullatenus diminuantur, manifestum est quod resistentia diminuetur in ratione minore quam duplicata velocitatis.

Corol. 7. Porro cum vires centrifugæ eo nomine ad augendam resistentiam conducant, quod particulæ motus suos per Fluidum ad majorem a se distantiam per vires illas propagent; & cum distantia illa minorem habeat rationem ad majora corpora: manifestum est quod augmentum resistentiæ ex viribus illis oriundum in corporibus majoribus minoris sit momenti; & propterea, quo corpora sint majora eo magis accurate resistentia tardescentium decrescet in duplicata ratione velocitatis.

Corol. 8. Unde etiam ratio illa duplicata magis accurate obtinebit in Fluidis quæ, pari densitate & vi Elastica, ex particulis minoribus constant. Nam si corpora illa majora diminuantur, & particulæ Fluidi, manente ejus densitate & vi Elastica, diminuantur in eadem ratione; manebit eadem ratio resistentiæ quæ prius: ut ex præcedentibus facile colligitur.

Corol. 9. Hæc omnia ita se habent in Fluidis, quorum vis Elastica ex particularum viribus centrifugis originem ducit. Quod si vis illa aliunde oriatur, veluti ex particularum expansione ad instar Lanæ vel ramorum arborum, aut ex alia quavis causa, qua motus particularum inter se redduntur minus liberi: resistentia, ob minorem Medii fluiditatem, erit major quam in superioribus Corollariis.

Prop. XXXIV. Theor. XXVII.

Quæ in præcedentibus duabus Propositionibus demonstrata sunt, obtinent ubi particulæ Systematum se mutuo contingunt, si modo particulæ illæ sint summe lubricæ.

Concipe particulas viribus quibusdam se mutuo fugere, & vires illas in accessu ad superficies particularum augeri in infinitum, & contra, in recessu ab iisdem celerrime diminui & statim evanescere. Concipe etiam systemata comprimi, ita ut partes eorum se mutuo contingant, nisi quatenus vires illæ contactum impediunt. Sint autem spatia per quæ vires particularum diffunduntur quam angustissima, ita ut particulæ se mutuo quam proxime contingant: & motus particularum inter se iidem erunt quam proxime ac si se mutuo contingerent. Eadem facilitate labentur inter se ac si essent summe lubricæ, & si impingant in se mutuo reflectentur ab invicem ope virium præfatarum, perinde ac si essent Elasticæ. Itaque motus erunt iidem in utroque casu, nisi quatenus perexigua particularum sese non contingentium intervalla diversitatem efficiant: quæ quidem diversitas diminuendo particularum intervalla diminui potest in infinitum. Jam vero quæ in præcedentibus duabus Propositionibus demonstrata sunt, obtinent in particulis sese non contingentibus, idque licet intervalla particularum, diminuendo spatia per quæ vires diffunduntur, diminuantur in infinitum. Et propterea eadem obtinent in particulis sese contingentibus, exceptis solum differentiis quæ tandem differentiis quibusvis datis minores evadant. Dico igitur quod accurate obtinent. Si negas, assigna differentiam in casu quocunque. Atqui jam probatum est quod differentia minor sit quam data quævis. Ergo differentia falso assignatur, & propterea nulla est.   Q. E. D.

Corol. 1. Igitur si Systematum duorum partes omnes quiescant inter se, exceptis duabus, quæ cæteris majores sint & sibi mutuo correspondeant inter cæteras similiter sitæ. Hæ secundum lineas similiter positas utcunque projectæ similes excitabunt motus in Systematibus, & temporibus proportionalibus pergent spatia similia & diametris suis proportionalia describere; & resistentur in ratione composita ex duplicata ratione velocitatum & duplicata ratione diametrorum & ratione densitatis Systematum.

Corol. 2. Unde si Systemata illa sint Fluida duo similia, & eorum partes duæ majores sint corpora in iisdem projecta: sint autem Fluidorum particulæ summe lubricæ, & quoad magnitudinem & densitatem proportionales corporibus: pergent corpora temporibus proportionalibus spatia similia & diametris suis proportionalia describere, & resistentur in ratione Corollario superiore definita.

Corol. 3. Proinde in eodem Fluido Projectile magnitudine datum resistitur in duplicata ratione velocitatis.

Corol. 4. At si particulæ Fluidi non sint summe lubricæ, vel si viribus quibuscunque se mutuo agitant, quibus motuum libertas diminuitur: Projectilia tardiora difficilius superabunt resistentiam, & propterea magis resistentur quam in velocitatis ratione duplicata.

Prop. XXXV. Theor. XXVIII.

Si Globus & Cylindrus æqualibus diametris descripti, in Medio raro & Elastico, secundum plagam axis Cylindri, æquali cum velocitate celerrime moveantur: erit resistentia Globi duplo minor quam resistentia Cylindri.