Philosophiae Naturalis Principia Mathematica
Figure for Prop. LXXXII.

Ut si vires centripetæ particularum Sphæræ sint reciproce ut distantiæ corpusculi a se attracti; vis, qua corpusculum situm in I trahitur a Sphæra tota, erit ad vim qua trahitur in P, in ratione composita ex dimidiata ratione distantiæ SI ad distantiam SP & ratione dimidiata vis centripetæ in loco I, a particula aliqua in centro oriundæ, ad vim centripetam in loco P ab eadem in centro particula oriundam, id est, ratione dimidiata distantiarum SI, SP ad invicem reciproce. Hæ duæ rationes dimidiatæ componunt rationem æqualitatis, & propterea attractiones in I & P a Sphæra tota factæ æquantur. Simili computo, si vires particularum Sphæræ sunt reciproce in duplicata ratione distantiarum, colligetur quod attractio in I sit ad attractionem in P, ut distantia SP ad Sphæræ semidiametrum SA: Si vires illæ sunt reciproce in triplicata ratione distantiarum, attractiones in I & P erunt ad invicem ut SP quad. ad SA quad.; si in quadruplicata, ut SP cub. ad SA cub. Unde cum attractio in P, in hoc ultimo casu, inventa fuit reciproce ut PS cub. × PI, attractio in I erit reciproce ut SA cub. × PI, id est (ob datum SA cub.) reciproce ut PI. Et similis est progressus in infinitum. Theorema vero sic demonstratur.

Stantibus jam ante constructis, & existente corpore in loco quovis P, ordinatim applicata DN inventa fuit ut {DEq. × PS} ÷ {PE × V}. Ergo si agatur IE, ordinata illa ad alium quemvis locum I, mutatis mutandis, evadet ut {DEq. × IS} ÷ {IE × V}. Pone vires centripetas, e Sphæræ puncto quovis E manantes, esse ad invicem in distantiis IE, PE, ut PEn ad IEn, (ubi numerus n designet indicem potestatum PE & IE) & ordinatæ illæ fient ut {DEq. × PS} ÷ {PE × PEn} & {DEq. × IS} ÷ {IE × IEn}, quarum ratio ad invicem est ut PS × IE × IEn ad IS × PE × PEn. Quoniam ob similia triangula SPE, SEI, fit IE ad PE ut IS ad SE vel SA; pro ratione IE ad PE scribe rationem IS ad SA; & ordinatarum ratio evadet PS × IEn ad SA × PEn. Sed PS ad SA dimidiata est ratio distantiarum PS, SI; & IEn ad PEn dimidiata est ratio virium in distantiis PS, IS. Ergo ordinatæ, & propterea areæ quas ordinatæ describunt, hisq; proportionales attractiones, sunt in ratione composita ex dimidiatis illis rationibus.   Q. E. D.

Prop. LXXXIII. Prob. XLII.

Figure for Prop. LXXXIII.

Invenire vim qua corpusculum in centro Sphæræ locatum ad ejus segmentum quodcunq; attrahitur.

Sit P corpus in centro Sphæræ, & RBSD segmentum ejus plano RDS & superficie Sphærica RBS contentum. Superficie Sphærica EFG centro P descripta secetur DB in F, ac distinguatur segmentum in partes BREFGS, FEDG. Sit autem superficies illa non pure Mathematica, sed Physica, profunditatem habens quam minimam. Nominetur ista profunditas O, & erit hæc superficies (per demonstrata Archimedis) ut PF × DF × O. Ponamus præterea vires attractivas particularum Sphæræ esse reciproce ut distantiarum dignitas illa cujus Index est n; & vis qua superficies FE trahit corpus P erit ut DF × O ÷ PFn - 1. Huic proportionale sit perpendiculum FN ductum in O; & area curvilinea BDLIB, quam ordinatim applicata FN in longitudinem DB per motum continuum ducta describit, erit ut vis tota qua segmentum totum RBSD trahit corpus P.   Q. E. I.

Prop. LXXXIV. Prob. XLIII.

Invenire vim qua corpusculum, extra centrum Sphæræ in axe segmenti cujusvis locatum, attrahitur ab eodem segmento.

A segmento EBK trahatur corpus P (Vide Fig. Prop. 79. 80. 81.) in ejus axe ADB locatum. Centro P intervallo PE describatur superficies Sphærica EFK, qua distinguatur segmentum in partes duas EBKF & EFKD. Quæratur vis partis prioris per Prop. LXXXI. & vis partis posterioris per Prop. LXXXIII.; & summa virium erit vis segmenti totius EBKD.   Q. E. I.

Scholium.

Explicatis attractionibus corporum Sphæricorum, jam pergere liceret ad leges attractionum aliorum quorundam ex particulis attractivis similiter constantium corporum; sed ista particulatim tractare minus ad institutum spectat. Suffecerit Propositiones quasdam generaliores de viribus hujusmodi corporum, deq; motibus inde oriundis, ob eorum in rebus Philosophicis aliqualem usum, subjungere.



SECT. XIII.

De Corporum etiam non Sphæricorum viribus attractivis.

Prop. LXXXV. Theor. XLII.

Si corporis attracti, ubi attrahenti contiguum est, attractio longe fortior sit, quam cum vel minimo intervallo separantur ab invicem: vires particularum trahentis, in recessu corporis attracti, decrescunt in ratione plusquam duplicata distantiarum a particulis.

Nam si vires decrescunt in ratione duplicata distantiarum a particulis; attractio versus corpus Sphæricum, propterea quod (per Prop. LXXIV.) sit reciproce ut quadratum distantiæ attracti corporis a centro Sphæræ, haud sensibiliter augebitur ex contactu; atq; adhuc minus augebitur ex contactu, si attractio in recessu corporis attracti decrescat in ratione minore. Patet igitur Propositio de Sphæris attractivis. Et par est ratio Orbium Sphæricorum concavorum corpora externa trahentium. Et multo magis res constat in Orbibus corpora interius constituta trahentibus, cum attractiones passim per Orbium cavitates ab attractionibus contrariis (per Prop. LXX.) tollantur, ideoq; vel in ipso contactu nullæ sunt. Quod si Sphæris hisce Orbibusq; Sphæricis partes quælibet a loco contactus remotæ auferantur, & partes novæ ubivis addantur: mutari possunt figuræ horum corporum attractivorum pro lubitu, nec tamen partes additæ vel subductæ, cum sint a loco contactus remotæ, augebunt notabiliter attractionis excessum qui ex contactu oritur. Constat igitur Propositio de corporibus figurarum omnium.   Q. E. D.

Prop. LXXXVI. Theor. XLIII.

Si particularum, ex quibus corpus attractivum componitur, vires in recessu corporis attracti decrescunt in triplicata vel plusquam triplicata ratione distantiarum a particulis: attractio longe fortior erit in contactu, quam cum attrahens & attractum intervallo vel minimo separantur ab invicem.

Nam attractionem in accessu attracti corpusculi ad hujusmodi Sphæram trahentem augeri in infinitum, constat per solutionem Problematis XLI. in Exemplo secundo ac tertio exhibitam. Idem, per Exempla illa & Theorema XLI inter se collata, facile colligitur de attractionibus corporum versus Orbes concavo-convexos, sive corpora attracta collocentur extra Orbes, sive intra in eorum cavitatibus. Sed & addendo vel auferendo his Sphæris & Orbibus ubivis extra locum contactus materiam quamlibet attractivam, eo ut corpora attractiva induant figuram quamvis assignatam, constabit Propositio de corporibus universis.   Q. E. D.

Prop. LXXXVII. Theor. XLIV.

Si corpora duo sibi invicem similia & ex materia æqualiter attractiva constantia seorsim attrahant corpuscula sibi ipsis proportionalia & ad se similiter posita: attractiones acceleratrices corpusculorum in corpora tota erunt ut attractiones acceleratrices corpusculorum in eorum particulas totis proportionales & in totis similiter positas.

Nam si corpora distinguantur in particulas, quæ sint totis proportionales & in totis similiter sitæ; erit, ut attractio in particulam quamlibet unius corporis ad attractionem in particulam correspondentem in corpore altero, ita attractiones in particulas singulas primi corporis ad attractiones in alterius particulas singulas correspondentes; & componendo, ita attractio in totum primum corpus ad attractionem in totum secundum.   Q. E. D.

Corol. 1. Ergo si vires attractivæ particularum, augendo distantias corpusculorum attractorum, decrescant in ratione dignitatis cujusvis distantiarum: attractiones acceleratrices in corpora tota erunt ut corpora directe & distantiarum dignitates illæ inverse. Ut si vires particularum decrescant in ratione duplicata distantiarum a corpusculis attractis, corpora autem sint ut A cub. & B cub. adeoq; tum corporum latera cubica, tum corpusculorum attractorum distantiæ a corporibus, ut A & B: attractiones acceleratrices in corpora erunt ut A cub. ÷ A quad. & B cub. ÷ B quad. id est, ut corporum latera illa cubica A & B. Si vires particularum decrescant in ratione triplicata distantiarum a corpusculis attractis; attractiones acceleratrices in corpora tota erunt ut A cub. ÷ A cub. & B cub. ÷ B cub. id est, æquales. Si vires decrescant in ratione quadruplicata, attractiones in corpora erunt ut A cub. ÷ Aqq. & B cub. ÷ Bqq. id est, reciproce ut latera cubica A & B. Et sic in cæteris.

Corol. 2. Unde vicissim, ex viribus quibus corpora similia trahunt corpuscula ad se similiter posita, colligi potest ratio decrementi virium particularum attractivarum in recessu corpusculi attracti; si modo decrementum illud sit directe vel inverse in ratione aliqua distantiarum.

Prop. LXXXVIII. Theor. XLV.

Si particularum æqualium corporis cujuscunq; vires attractivæ sint ut distantiæ locorum a particulis: vis corporis totius tendet ad ipsius centrum gravitatis; & eadem erit cum vi globi ex materia consimili & æquali constantis & centrum habentis in ejus centro gravitatis.

Figure for Prop. LXXXVIII.

Corporis RSTV particulæ A, B trahant corpusculum aliquod Z viribus quæ, si particulæ æquantur inter se, sint ut distantiæ AZ, BZ; sin particulæ statuantur inæquales, sint ut hæ particulæ in distantias suas AZ, BZ respective ductæ. Et exponantur hæ vires per contenta illa A × AZ & B × BZ. Jungatur AB, & secetur ea in G ut sit AG ad BG ut particula B ad particulam A; & erit G commune centrum gravitatis particularum A & B. Vis A × AZ per Legum Corol. 2. resolvitur in vires A × GZ & A × AG, & vis B × BZ in vires B × GZ & B × BG. Vires autem A × AG & B × BG, ob proportionales A ad B & BG ad AG, æquantur, adeoq;, cum dirigantur in partes contrarias, se mutuo destruunt. Restant vires A × GZ & B × GZ. Tendunt hæ ab Z versus centrum G, & vim A + B × GZ componunt; hoc est, vim eandem ac si particulæ attractivæ A & B consisterent in eorum communi gravitatis centro G, globum ibi componentes.

Eodem argumento si adjungatur particula tertia C; & componatur hujus vis cum vi A + B × GZ tendente ad centrum G, vis inde oriunda tendet ad commune centrum gravitatis globi illius G & particulæ C; hoc est, ad commune centrum gravitatis trium particularum A, B, C; & eadem erit ac si globus & particula C consisterent in centro illo communi, globum majorem ibi componentes. Et sic pergitur in infinitum. Eadem est igitur vis tota particularum omnium corporis cujuscunq; RSTV ac si corpus illud, servato gravitatis centro, figuram globi indueret.   Q. E. D.

Corol. Hinc motus corporis attracti Z idem erit ac si corpus attrahens RSTV esset Sphæricum: & propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.

Prop. LXXXIX. Theor. XLVI.

Si Corpora sint plura ex particulis æqualibus constantia, quarum vires sunt ut distantiæ locorum a singulis: vis ex omnium viribus composita, qua corpusculum quodcunq; trahitur, tendet ad trahentium commune centrum gravitatis, & eadem erit ac si trahentia illa, servato gravitatis centro communi, coirent & in globum formarentur.

Demonstratur eodem modo, atq; Propositio superior.

Corol. Ergo motus corporis attracti idem erit ac si corpora trahentia, servato communi gravitatis centro, coirent & in globum formarentur. Ideoq; si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.

Prop. XC. Prob. XLIV.

Si ad singula circuli cujuscunq; puncta tendant vires centripetæ decrescentes in quacunq; distantiarum ratione: invenire vim qua corpusculum attrahitur ubivis in recta quæ ad planum circuli per centrum ejus perpendicularis consistit.

Figure for Prop. XC.

Centro A intervallo quovis AD, in plano cui recta AP perpendicularis est, describi intelligatur circulus; & invenienda sit vis qua corpus quodvis P in eundem attrahitur. A circuli puncto quovis E ad corpus attractum P agatur recta PE: In recta PA capiatur PF ipsi PE æqualis, & erigatur Normalis FK, quæ sit ut vis qua punctum E trahit corpusculum P. Sitq; IKL curva linea quam punctum K perpetuo tangit. Occurrat eadem circuli plano in L. In PA capiatur PH æqualis PD, & erigatur perpendiculum HI curvæ prædictæ occurrens in I; & erit corpusculi P attractio in circulum ut area AHIL ducta in altitudinem AP.   Q. E. I.

Etenim in AE capiatur linea quam minima Ee. Jungatur Pe, & in PA capiatur Pf ipsi Pe æqualis. Et quoniam vis, qua annuli punctum quodvis E trahit ad se corpus P, ponitur esse ut FK, & inde vis qua punctum illud trahit corpus P versus A est ut AP × FK ÷ PE, & vis qua annulus totus trahit corpus P versus A, ut annulus & AP × FK ÷ PE conjunctim; annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) æquatur rectangulo PE × cE seu PE × Ff; erit vis qua annulus iste trahit corpus P versus A ut PE × Ff & AP × FK ÷ PE conjunctim, id est, ut contentum Ff × AP × FK, sive ut area FKkf ducta in AP. Et propterea summa virium, quibus annuli omnes in circulo, qui centro A & intervallo AD describitur, trahunt corpus P versus A, est ut area tota AHIKL ducta in AP.   Q. E. D.

Corol. 1. Hinc si vires punctorum decrescunt in duplicata distantiarum ratione, hoc est, si sit FK ut 1 ÷ PF quad., atq; adeo area AHIKL ut {1 ÷ PA} - {1 ÷ PH}; erit attractio corpusculi P in circulum 1 - {PA ÷ PH}, id est, ut AH ÷ PH.

Corol. 2. Et universaliter, si vires punctorum ad distantias D sint reciproce ut distantiarum dignitas quælibet Dn, hoc est, si sit FK ut 1 ÷ Dn, adeoq; area AHIKL ut {1 ÷ PAn - 1} - {1 ÷ PHn - 1}; erit attractio corpusculi P in circulum ut {1 ÷ PAn - 2} - {PA ÷ PHn - 1}.

Corol. 3. Et si diameter circuli augeatur in infinitum, & numerus n sit unitate major; attractio corpusculi P in planum totum infinitum erit reciproce ut PAn - 2, propterea quod terminus alter PA ÷ PHn - 1 evanescet.

Prop. XCI. Prob. XLV.

Invenire attractionem corpusculi siti in axe solidi, ad cujus puncta singula tendunt vires centripetæ in quacunq; distantiarum ratione decrescentes.

Figure for Prop. XCI.

In solidum ADEFG trahatur corpusculum P, situm in ejus axe AB. Circulo quolibet RFS ad hunc axem perpendiculari secetur hoc solidum, & in ejus diametro FS, in plano aliquo PALKB per axem transeunte, capiatur (per Prop. XC.) longitudo FK vi qua corpusculum P in circulum illum attrahitur proportionalis. Tangat autem punctum K curvam lineam LKI, planis extimorum circulorum AL & BI occurrentem in A & B; & erit attractio corpusculi P in solidum ut area LABI.   Q. E. D.

Corol. 1. Unde si solidum Cylindrus sit, parallelogrammo ADEB circa axem AB revoluto descriptus, & vires centripetæ in singula ejus puncta tendentes sint reciproce ut quadrata distantiarum a punctis: erit attractio corpusculi P in hunc Cylindrum ut BA - PE + PD. Nam ordinatim applicata FK (per Corol. 1. Prop. XC.) erit ut 1 - PF ÷ PR. Hujus pars 1 ducta in longitudinem AB, describit aream 1 × AB; & pars altera PF ÷ PR ducta in longitudinem PB, describit aream 1 in PE - AD (id quod ex curvæ LKI quadratura facile ostendi potest:) & similiter pars eadem ducta in longitudinem PA describit aream 1 in PD - AD, ductaq; in ipsarum PB, PA differentiam AB describit arearum differentiam 1 in PE - PD. De contento primo 1 × AB auferatur contentum postremum 1 in PE - PD, & restabit area LABI æqualis 1 in AB - PE + PD. Ergo vis huic areæ proportionalis est ut AB - PE + PD.

Figure for Corol. 2.

Corol. 2. Hinc etiam vis innotescit qua Sphærois AGBCD attrahit corpus quodvis P, exterius in axe suo AB situm. Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, æquetur semper longitudini PD, quæ ducitur ad punctum illud D, in quo applicata ista Sphæroidem secat. A Sphæroidis verticibus A, B ad ejus axem AB erigantur perpendicula AK, BM ipsis AP, BP æqualia respective, & propterea Sectioni Conicæ occurrentia in K & M; & jungantur KM auferens ab eadem segmentum KMRK. Sit autem Sphæroidis centrum S & semidiameter maxima SC: & vis qua Sphærois trahit corpus P erit ad vim qua Sphæra, diametro AB descripta, trahit idem corpus, ut

AS × CSq. - PS × KMRK   ad   AS cub. .
PSq. + CSq. - ASq. 3PS quad.

Et eodem computando fundamento invenire licet vires segmentorum Sphæroidis.

Figure for Corol. 3.

Corol. 3. Quod si corpusculum intra Sphæroidem in data quavis ejusdem diametro collocetur; attractio erit ut ipsius distantia a centro. Id quod facilius colligetur hoc argumento. Sit AGOF Sphærois attrahens, S centrum ejus & P corpus attractum. Per corpus illud P agantur tum semidiameter SPA, tum rectæ duæ quævis DE, FG Sphæroidi hinc inde occurrentes in D & E, F & G: Sintq; PCM, HLN superficies Sphæroidum duarum interiorum, exteriori similium & concentricarum, quarum prior transeat per corpus P & secet rectas DE & FG in B & C, posterior secet easdem rectas in H, I & K, L. Habeant autem Sphæroides omnes axem communem, & erunt rectarum partes hinc inde interceptæ DP & BE, FP & CG, DH & IE, FK & LG sibi mutuo æquales; propterea quod rectæ DE, PB & HI bisecantur in eodem puncto, ut & rectæ FG, PC & KL. Concipe jam DPF, EPG designare Conos oppositos, angulis verticalibus DPF, EPG infinite parvis descriptos, & lineas etiam DH, EI infinite parvas esse; & Conorum particulæ Sphæroidum superficiebus abscissæ DHKF, GLIE, ob æqualitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud æqualiter trahent. Et pari ratione, si superficiebus Sphæroidum innumerarum similium concentricarum & axem communem habentium dividantur spatia DPF, EGCB in particulas, hæ omnes utrinq; æqualiter trahent corpus P in partes contrarias. Æquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt. Et par est ratio virium materiæ omnis extra Sphæroidem intimam PCBM. Trahitur igitur corpus P a sola Sphæroide intima PCBM, & propterea (per Corol. 3. Prop. LXXII.) attractio ejus est ad vim, qua corpus A trahitur a Sphæroide tota AGOD, ut distantia PS ad distantiam AS.   Q. E. I.

Prop. XCII. Prob. XLVI.

Dato corpore attractivo, invenire rationem decrementi virium centripetarum in ejus puncta singula tendentium.

E corpore dato formanda est Sphæra vel Cylindrus aliave figura regularis, cujus lex attractionis, cuivis decrementi rationi congruens (per Prop. LXXX. LXXXI. & XCI.) inveniri potest. Dein factis experimentis invenienda est vis attractionis in diversis distantiis, & lex attractionis in totum inde patefacta dabit rationem decrementi virium partium singularum, quam invenire oportuit.

Prop. XCIII. Theor. XLVII.

Si solidum ex una parte planum, ex reliquis autem partibus infinitum, constet ex particulis æqualibus æqualiter attractivis, quarum vires in recessu a solido decrescunt in ratione potestatis cujusvis distantiarum plusquam quadraticæ, & vi solidi totius corpusculum ad utramvis plani partem constitutum trahatur: dico quod solidi vis illa attractiva, in recessu ab ejus superficie plana, decrescet in ratione potestatis, cujus latus est distantia corpusculi a plano, & Index ternario minor quam Index potestatis distantiarum.

Figure for Prop. XCIII.

Cas. 1. Sit LGl planum quo Solidum terminatur. Jaceat autem solidum ex parte plani hujus versus I, inq; plana innumera mHM, nIN &c. ipsi GL parallela resolvatur. Et primo collocetur corpus attractum C extra solidum. Agatur autem CGHI planis illis innumeris perpendicularis, & decrescant vires attractivæ punctorum solidi in ratione potestatis distantiarum, cujus index sit numerus n ternario non minor. Ergo (per Corol. 3. Prop. XC) vis qua planum quodvis mHM trahit punctum C est reciproce ut CHn - 2. In plano mHM capiatur longitudo HM ipsi CHn - 2 reciproce proportionalis, & erit vis illa ut HM. Similiter in planis singulis lGL, nIN, oKO &c. capiantur longitudines GL, IN, KO &c. ipsis CGn - 2, CIn - 2, CKn - 2 &c. reciproce proportionales; & vires planorum eorundem erunt ut longitudines captæ, adeoq; summa virium ut summa longitudinum, hoc est, vis solidi totius ut area GLOK in infinitum versus OK producta. Sed area illa per notas quadraturarum methodos est reciproce ut CGn - 3, & propterea vis solidi totius est reciproce ut CGn - 3 Q. E. D.

Cas. 2. Collocetur jam corpusculum C ex parte plani lGL intra solidum, & capiatur distantia CK æqualis distantiæ CG. Et solidi pars LGloKO, planis parallelis lGL, oKO terminata, corpusculum C in medio situm nullam in partem trahet, contrariis oppositorum punctorum actionibus se mutuo per æqualitatem tollentibus. Proinde corpusculum C sola vi solidi ultra planum OK siti trahitur. Hæc autem vis (per Casum primum) est reciproce ut CKn - 3, hoc est (ob æquales CG, CK) reciproce ut CGn - 3.   Q. E. D.

Corol. 1. Hinc si solidum LGIN planis duobus infinitis parallelis LG, IN utrinq; terminetur; innotescit ejus vis attractiva, subducendo de vi attractiva solidi totius infiniti LGKO vim attractivam partis ulterioris NIKO, in infinitum versus KO productæ.

Corol. 2. Si solidi hujus infiniti pars ulterior, quando attractio ejus collata cum attractione partis citerioris nullius pene est momenti, rejiciatur: attractio partis illius citerioris augendo distantiam decrescet quam proxime in ratione potestatis CGn - 3.

Corol. 3. Et hinc si corpus quodvis finitum & ex una parte planum trahat corpusculum e regione medii illius plani, & distantia inter corpusculum & planum collata cum dimensionibus corporis attrahentis perexigua sit, constet autem corpus attrahens ex particulis homogeneis, quarum vires attractivæ decrescunt in ratione potestatis cujusvis plusquam quadruplicatæ distantiarum; vis attractiva corporis totius decrescet quamproxime in ratione potestatis, cujus latus sit distantia illa perexigua, & Index ternario minor quam Index potestatis prioris. De corpore ex particulis constante, quarum vires attractivæ decrescunt in ratione potestatis triplicatæ distantiarum, assertio non valet, propterea quod, in hoc casu, attractio partis illius ulterioris corporis infiniti in Corollario secundo, semper est infinite major quam attractio partis citerioris.

Scholium.

Si corpus aliquod perpendiculariter versus planum datum trahatur, & ex data lege attractionis quæratur motus corporis: Solvetur Problema quærendo (per Prop. XXVII.) motum corporis recta descendentis ad hoc planum, & (per Legum Corol. 2.) componendo motum istum cum uniformi motu, secundum lineas eidem plano parallelas facto. Et contra, si quæratur Lex attractionis in planum secundum lineas perpendiculares factæ ea conditione ut corpus attractum in data quacunq; curva linea moveatur, solvetur Problema operando ad exemplum Problematis tertii.

Operationes autem contrahi solent resolvendo ordinatim applicatas in series convergentes. Ut si ad basem A in angulo quovis dato ordinatim applicetur longitudo B, quæ sit ut basis dignitas quælibet Am÷n; & quæratur vis qua corpus, secundum positionem ordinatim applicatæ, vel in basem attractum vel a basi fugatum, moveri possit in curva linea quam ordinatim applicata termino suo superiore semper attingit; Suppono basem augeri parte quam minima O, & ordinatim applicatam A + Om÷n resolvo in Seriem infinitam

Am÷n + m OA(m - nn + mm - mn O2 A(m - 2nn &c.
n 2nn

atq; hujus termino in quo O duarum est dimensionum, id est termino {mm - mn} ÷ 2nn O2 A(m - 2nn vim proportionalem esse suppono. Est igitur vis quæsita ut {mm - mn} ÷ nn A(m - 2nn, vel quod perinde est, ut {mm - mn} ÷ nn B(m - 2nm. Ut si ordinatim applicata Parabolam attingat, existente m = 2, & n = 1: fiet vis ut data 2B0, adeoq; dabitur. Data igitur vi corpus movebitur in Parabola, quemadmodum Galilæus demonstravit. Quod si ordinatim applicata Hyperbolam attingat, existente m = 0 - 1, & n = 1; fiet vis ut 2B3: adeoq; vi, quæ sit ut cubus ordinatim applicatæ, corpus movebitur in Hyperbola. Sed missis hujusmodi Propositionibus, pergo ad alias quasdam de motu, quas nondum attigi.



SECT. XIV.

De motu corporum minimorum, quæ viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur.

Prop. XCIV. Theor. XLVIII.

Figure for Prop. XCIV.

Si media duo similaria, spatio planis parallelis utrinq; terminato, distinguantur ab invicem, & corpus in transitu per hoc spatium attrahatur vel impellatur perpendiculariter versus medium alterutrum, neq; ulla alia vi agitetur vel impediatur; Sit autem attractio, in æqualibus ab utroq; plano distantiis ad eandem ipsius partem captis, ubiq; eadem: dico quod sinus incidentiæ in planum alterutrum erit ad sinum emergentiæ ex plano altero in ratione data.

Cas. 1. Sunto Aa, Bb plana duo parallela. Incidat corpus in planum prius Aa secundam lineam GH, ac toto suo per spatium intermedium transitu attrahatur vel impellatur versus medium incidentiæ, eaq; actione describat lineam curvam HI, & emergat secundum lineam IK. Ad planum emergentiæ Bb erigatur perpendiculum IM, occurrens tum lineæ incidentiæ GH productæ in M, tum plano incidentiæ Aa in R; & linea emergentiæ KI producta occurrat HM in L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q, quam MI productam in N; & primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilæi) curva HI Parabola, cujus hæc est proprietas, ut rectangulum sub dato latere recto & linea IM æquale sit HM quadrato; sed & linea HM bisecabitur in L. Unde si ad MI demittatur perpendiculum LO, æquales erunt MO, OR; & additis æqualibus IO, ON, fient totæ æquales MN, IR. Proinde cum IR detur, datur etiam MN, estq; rectangulum NMI ad rectangulum sub latere recto & IM, hoc est, ad HMq., in data ratione. Sed rectangulum NMI æquale est rectangulo PMQ, id est, differentiæ quadratorum MLq. & PLq. seu LIq.; & HMq. datam rationem habet ad sui ipsius quartam partem LMq.: ergo datur ratio MLq. - LIq. ad MLq., & divisim, ratio LIq. ad MLq., & ratio dimidiata LI ad ML. Sed in omni triangulo LMI, sinus angulorum sunt proportionales lateribus oppositis. Ergo datur ratio sinus anguli incidentiæ LMR ad sinum anguli emergentiæ LIR.   Q. E. D.

Figure for Corol. 2. and Prop. XCV.

Cas. 2. Transeat jam corpus successive per spatia plura parallelis planis terminata, AabB, BbcC &c. & agitetur vi quæ sit in singulis separatim uniformis, at in diversis diversa; & per jam demonstrata, sinus incidentiæ in planum primum Aa erit ad sinum emergentiæ ex plano secundo Bb, in data ratione; & hic sinus, qui est sinus incidentiæ in planum secundum Bb, erit ad sinum emergentiæ ex plano tertio Cc, in data ratione; & hic sinus ad sinum emergentiæ ex plano quarto Dd, in data ratione; & sic in infinitum: & ex æquo sinus incidentiæ in planum primum ad sinum emergentiæ ex plano ultimo in data ratione. Minuatur jam planorum intervalla & augeatur numerus in infinitum, eo ut attractionis vel impulsus actio secundum legem quamcunq; assignatam continua reddatur; & ratio sinus incidentiæ in planum primum ad sinum emergentiæ ex plano ultimo, semper data existens, etiamnum dabitur.   Q. E. D.

Prop. XCV. Theor. XLIX.

Iisdem positis; dico quod velocitas corporis ante incidentiam est ad ejus velocitatem post emergentiam, ut sinus emergentiæ ad sinum incidentiæ.

Capiantur AH, Id æquales, & erigantur perpendicula AG, dK occurrentia lineis incidentiæ & emergentiæ GH, IK, in G & K. In GH capiatur TH æqualis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2. distinguatur motus corporis in duos, unum planis Aa, Bb, Cc &c. perpendicularem, alterum iisdem parallelum. Vis attractionis vel impulsus agendo secundum lineas perpendiculares nil mutat motum secundum parallelas, & propterea corpus hoc motu conficiet æqualibus temporibus æqualia illa secundum parallelas intervalla, quæ sunt inter lineam AG & punctum H, interq; punctum I & lineam dK; hoc est, æqualibus temporibus describet lineas GH, IK. Proinde velocitas ante incidentiam est ad velocitatem post emergentiam, ut GH ad IK vel TH, id est, ut AH vel Id ad vH, hoc est (respectu radii TH vel IK) ut sinus emergentiæ ad sinum incidentiæ.   Q. E. D.

Prop. XCVI. Theor. L.

Iisdem positis & quod motus ante incidentiam velocior sit quam postea: dico quod corpus, inclinando lineam incidentiæ, reflectetur tandem, & angulus reflexionis fiet æqualis angulo incidentiæ.

Figure for Prop. XCVI.

Nam concipe corpus inter plana parallela Aa, Bb, Cc &c. describere arcus Parabolicos, ut supra; sintq; arcus illi HP, PQ, QR, &c. Et sit ea lineæ incidentiæ GH obliquitas ad planum primum Aa, ut sinus incidentiæ sit ad radium circuli, cujus est sinus, in ea ratione quam habet idem sinus incidentiæ ad sinum emergentiæ ex plano Dd, in spatium DdeE: & ob sinum emergentiæ jam factum æqualem radio, angulus emergentiæ erit rectus, adeoq; linea emergentiæ coincidet cum plano Dd. Perveniat corpus ad hoc planum in puncto R; & quoniam linea emergentiæ coincidit cum eodem plano, perspicuum est quod corpus non potest ultra pergere versus planum Ee. Sed nec potest idem pergere in linea emergentiæ Rd, propterea quod perpetuo attrahitur vel impellitur versus medium incidentiæ. Revertetur itaq; inter plana Cc, Dd describendo arcum Parabolæ QRq, cujus vertex principalis (juxta demonstrata Galilæi) est in R; secabit planum Cc in eodem angulo in q, ac prius in Q; dein pergendo in arcubus parabolicis qp, ph &c. arcubus prioribus QP, PH similibus & æqualibus, secabit reliqua plana in iisdem angulis in p, h &c. ac prius in P, H &c. emergetq; tandem eadem obliquitate in h, qua incidit in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui & numerum augeri, eo ut actio attractionis vel impulsus secundum legem quamcunq; assignatam continua reddatur; & angulus emergentiæ semper angulo incidentiæ æqualis existens, eidem etiamnum manebit æqualis.   Q. E. D.

Scholium.

Figure for Scholium.

Harum attractionum haud multum dissimiles sunt Lucis reflexiones & refractiones, factæ secundum datam Secantium rationem, ut invenit Snellius, & per consequens secundum datam Sinuum rationem, ut exposuit Cartesius. Namq; Lucem successive propagari & spatio quasi decem minutorum primorum a Sole ad Terram venire, jam constat per Phænomena Satellitum Jovis, Observationibus diversorum Astronomorum confirmata. Radii autem in aere existentes (uti dudum Grimaldus, luce per foramen in tenebrosum cubiculum admissa, invenit, & ipse quoq; expertus sum) in transitu suo prope corporum vel opacorum vel perspicuorum angulos (quales sunt nummorum ex auro, argento & ære cusorum termini rectanguli circulares, & cultrorum, lapidum aut fractorum vitrorum acies) incurvantur circum corpora, quasi attracti in eadem; & ex his radiis, qui in transitu illo propius accedunt ad corpora incurvantur magis, quasi magis attracti, ut ipse etiam diligenter observavi. In figura designat s aciem cultri vel cunei cujusvis AsB; & gowog, fnvnf, emtme, dlsld sunt radii, arcubus owo, nvn, mtm, lsl versus cultrum incurvati; idq; magis vel minus pro distantia eorum a cultro. Cum autem talis incurvatio radiorum fiat in aere extra cultrum, debebunt etiam radii, qui incidunt in cultrum, prius incurvari in aere quam cultrum attingunt. Et par est ratio incidentium in vitrum. Fit igitur refractio, non in puncto incidentiæ, sed paulatim per continuam incurvationem radiorum, factam partim in aere antequam attingunt vitrum, partim (ni fallor) in vitro, postquam illud ingressi sunt: uti in radiis ckzkc, biyib, ahxha incidentibus ad r, q, p, & inter k & z, i & y, h & x incurvatis, delineatum est. Igitur ob analogiam quæ est inter propagationem radiorum lucis & progressum corporum, visum est Propositiones sequentes in usus opticos subjungere; interea de natura radiorum (utrum sint corpora necne) nihil omnino disputans, sed trajectorias corporum trajectoriis radiorum persimiles solummodo determinans.

Prop. XCVII. Prob. XLVII.

Posito quod sinus incidentiæ in superficiem aliquam sit ad sinum emergentiæ in data ratione, quodq; incurvatio viæ corporum juxta superficiem illam fiat in spatio brevissimo, quod ut punctum considerari possit; determinare superficiem quæ corpuscula omnia de loco dato successive manantia convergere faciat ad alium locum datum.