Si APEp Terram designet uniformiter densam, centroque C & polis P, p & æquatore AE delineatam; & si centro C radio CP describi intelligatur sphæra Pape; sit autem QR planum, cui recta à centro Solis ad centrum Terræ ducta normaliter insistit; & Terræ totius exterioris PapAPepE, quæ Sphærâ modò descriptâ altior est, particulæ singulæ conantur recedere hinc inde à plano QR, sitque conatus particulæ cujusque ut ejusdem distantia à plano: erit vis & efficacia tota particularum omnium, ad Terram circulariter movendam, quadruplo minor quàm vis tota particularum totidem in Æquatoris circulo AE, uniformiter per totum circuitum in morem annuli dispositarum, ad Terram consimili motu circulari movendam. Et motus iste circularis circa axem in plano QR jacentem, & axi Pp perpendiculariter insistentem, peragetur.
Sit enim IK circulus minor Æquatori AE parallelus, sitque L particula Terræ in circulo illo extra globum Pape sita. Et si in planum QR demittatur perpendiculum LM, vis tota particulæ illius ad Terram circa ipsius centrum convertendum proportionalis erit eidem LM: & si hæc vis LM (per Legum Corol. 2.) distinguatur in vires LN, NM; efficacia virium MN particularum omnium L, in circuitu Terræ totius extra globum Pape consistentium, ad Terram circa ipsius centrum secundum ordinem literarum ApEP convertendam, erit ad efficaciam virium LN particularum omnium L, ad Terram circa ipsius centrum secundum ordinem contrarium earundem literarum convertendam, ut tria ad duo. Ideoque efficacia virium omnium MN erit ad excessum efficaciæ hujus supra efficaciam virium omnium LN ut tria ad unum. Et si particulæ illæ omnes locarentur in Æquatore, efficacia virium omnium LN evanesceret, & efficacia virium omnium MN augeretur in ratione quatuor ad tria. Quare excessus ille, qui est efficacia absoluta particularum in locis propriis, est pars quarta efficaciæ particularum earundem in Æquatore. Motus autem æquinoctiorum est ut hæc efficacia. Singula examinet qui volet. Brevitati consulo.
Lemma II.
Motus autem Terræ totius circa axem illum, ex motibus particularum omnium compositus, erit ad motum annuli circa axem eundem, in ratione composita ex ratione materiæ in Terra ad materiam in annulo, & ratione trium quadratorum ex arcu quadrantali circuli cujuscunque, ad duo quadrata ex diametro; id est in ratione materiæ ad materiam & numeri 925275 & 1000000.
Est enim motus Cylindri circa axem suum immotum revolventis, ad motum Sphæræ inscriptæ & simul revolventis, ut quælibet quatuor æqualia quadrata ad tres ex circulis sibi inscriptis: & motus Cylindri ad motum annuli tenuissimi, Sphæram & Cylindrum ad communem eorum contactum ambientis, ut duplum materiæ in Cylindro ad triplum materiæ in annulo; & annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
Lemma III.
Si annulus, Terra omni reliqua sublata, solus in orbe Terræ motu annuo circa Solem ferretur, & interea circa axem suum, ad planum Eclipticæ in angulo graduum 23½ inclinatum, motu diurno revolveretur: idem foret motus Punctorum Æquinoctialium sive annulus iste fluidus esset, sive is ex materia rigida & firma constaret.
Prop. XXXIX. Prob. XIX.
Invenire Præcessionem Æquinoctiorum.
Motus mediocris horarius Nodorum Lunæ in Orbe circulari, ubi Nodi sunt in Quadraturis, erat 16″. 35″′. 16iv. 36v. & hujus dimidium 8″. 17″′. 38iv. 18v. (ob rationes & supra explicatas) est motus medius horarius Nodorum in tali Orbe; fitque anno toto sidereo 20 gr. 11′. 46″. Quoniam igitur Nodi Lunæ in tali Orbe conficerent annuatim 20 gr. 11′. 46″. in antecedentia; & si plures essent Lunæ motus Nodorum cujusque, per Corol. 16. Prop. LXVI. Lib. I. forent reciprocè ut tempora periodica; & propterea si Luna spatio diei siderei juxta superficiem Terræ revolveretur, motus annuus Nodorum foret ad 20 gr. 11′. 46″. ut dies sidereus horarum 23. 56′. ad tempus periodicum Lunæ dierum 27. 7 hor. 43′; id est ut 1436 ad 39343. Et par est ratio Nodorum annuli Lunarum Terram ambientis; sive Lunæ illæ se mutuò non contingant, sive liquescant & in annulum continuum formentur, sive denique annulus ille rigescat & inflexibilis reddatur.
Fingamus igitur quod annulus iste quoad quantitatem materiæ æqualis sit Terræ omni PapAPepE, quæ globo PapE superior est; & quoniam globus iste est ad Terram illam superiorem ut aC qu. ad AC qu. - aC qu. id est (cum Terræ diameter minor PC vel aC sit ad diametrum majorem AC ut 689 ad 692) ut 4143 ad 474721 seu 1000 ad 114585; si annulus iste Terram secundum æquatorem cingeret, & uterque simul circa diametrum annuli revolveretur, motus annuli esset ad motum globi interioris (per hujus Lem. II.) ut 4143 ad 474721 & 1000000 ad 925275 conjunctim, hoc est ut 4143 ad 439248: ideoque motus annuli esset ad summam motuum annuli & globi, ut 4143 ad 443991. Unde si annulus globo adhæreat, & motum suum, quo ipsius Nodi seu puncta æquinoctialia regrediuntur, cum globo communicet: motus qui restabit in annulo erit ad ipsius motum priorem ut 4143 ad 443391; & propterea motus punctorum æquinoctialium diminuetur in eadem ratione. Erit igitur motus annuus punctorum æquinoctialium corporis ex globo & annulo compositi, ad motum 20 gr. 11′. 46″, ut 1436 ad 39343 & 4143 ad 443391 conjunctim, id est ut 1 ad 2932. Vires autem quibus Nodi Lunarum (ut supra explicui) atque adeò quibus puncta æquinoctialia annuli regrediuntur (id est vires 3IT, in Fig. pag. 444.) sunt in singulis particulis ut distantiæ particularum à plano QR, & his viribus particulæ illæ planum fugiunt; & propterea (per Lem. I.) si materia annuli per totam globi superficiem, in morem figuræ PapAPepE, ad superiorem illam Terræ partem constituendam spargeretur, vis & efficacia tota particularum omnium ad Terram circa quamvis Æquatoris diametrum rotandam, atque adeo ad movenda puncta æquinoctialia, evaderet quadruplo minor quàm prius. Ideoque annuus æquinoctiorum regressus jam esset ad 20 gr. 11′. 46″. ut 1 ad 11728, ac proinde fieret 6″. 12″′. 2iv. Hæc est præcessio Æquinoctiorum à vi Solis oriunda. Vis autem Lunæ ad mare movendum erat ad vim Solis ut 6⅓ ad 1, & hæc vis pro quantitate sua augebit etiam præcessionem Æquinoctiorum. Ideoque præcessio illa ex utraque causa oriunda jam fiet major in ratione 7⅓ ad 1, & sic erit 45″. 24″′. 15iv. Hic est motus punctorum æquinoctialium ab actionibus Solis & Lunæ in partes Terræ, quæ globo Pape incumbunt, oriundus. Nam Terra ab actionibus illis in globum ipsum exercitis nullam in partem inclinari potest.
Designet jam APEp corpus Terræ figurâ Ellipticâ præditum, & ex uniformi materiâ constans. Et si distinguatur idem in figuras innumeras Ellipticas concentricas & consimiles, APEp, BQbq, CRcr, DSds, &c. quarum diametri sint in progressione Geometrica: quoniam figuræ consimiles sunt, vires Solis & Lunæ, quibus puncta æquinoctialia regrediuntur, efficerent ut figurarum reliquarum seorsim spectatarum puncta eadem æquinoctialia eadem cum velocitate regrederentur. Et par est ratio motus orbium singulorum AQEq, BRbr, CScs, &c. qui sunt figurarum illarum differentiæ. Orbis uniuscujusque, si solus esset, puncta æquinoctialia eadem cum velocitate regredi deberent. Nec refert utrum orbis quilibet densior sit an rarior, si modò ex materia uniformiter densa confletur. Unde etiam si orbes ad centrum densiores sint quàm ad circumferentiam, idem erit motus æquinoctiorum Terræ totius ac prius; si modo orbis unusquisque seorsim spectatus ex materia uniformiter densa constet, & figura orbis non mutetur. Quod si figuræ orbium mutentur, Terraque ad æquatorem AE, ob densitatem materiæ ad centrum, jam altius ascendat quàm prius; regressus æquinoctiorum ex aucta altitudine augebitur, idque in orbibus singulis seorsim existentibus, in ratione majoris altitudinis materiæ juxta orbis illius æquatorem; in Terra autem tota in ratione majoris altitudinis materiæ juxta æquatorem orbis non extimi AQEq, non intimi Gg, sed mediocris alicujus CScs. Terram autem ad centrum densiorem esse, & propterea sub Æquatore altiorem esse quàm ad polos in majore ratione quàm 692 ad 689, in superioribus insinuavimus. Et ratio majoris altitudinis colligi ferè potest ex majore diminutione gravitatis sub æquatore, quàm quæ ex ratione 692 ad 689 consequi debeat. Excessus longitudinis penduli, quod in Insula Goree & in illâ Cayennæ minutis singulis secundis oscillatur, supra longitudinem Penduli quod Parisiis eodem tempore oscillatur, à Gallis inventi sunt pars decima & pars octava digiti, qui tamen ex proportione 692 ad 689 prodiere 81/1000 & 89/1000. Major est itaque longitudo Penduli Cayennæ quàm oportet, in ratione ⅛ ad 89/1000, seu 1000 ad 712; & in Insula Goree in ratione 1/10 ad 81/1000 seu 1000 ad 810. Si sumamus rationem mediocrem 1000 ad 760; minuenda erit gravitas Terræ ad æquatorem, & ibidem augenda ejus altitudo, in ratione 1000 ad 760 quam proximè. Unde motus æquinoctiorum (ut supra dictum est) auctus in ratione altitudinis Terræ, non ad orbem extimum, non ad intimum, sed ad intermedium aliquem, id est, non in ratione maxima 1000 ad 760, non in minima 1000 ad 1000, sed in mediocri aliqua, puta 10 ad 8⅓ vel 6 ad 5, evadet annuatim 54″. 29″′. 6iv.
Rursus hic motus, ob inclinationem plani Æquatoris ad planum Eclipticæ, minuendus est, idque in ratione Sinus complementi inclinationis ad Radium. Nam distantia particulæ cujusque terrestris à plano QR, quo tempore particula illa à plano Eclipticæ longissimè distat, in Tropico suo (ut ita dicam) consistens, diminuitur, per inclinationem planorum Eclipticæ & Æquatoris ad invicem, in ratione Sinus complementi inclinationis ad Radium. Et in ratione distantiæ illius diminuitur etiam vis particulæ ad æquinoctia movenda. In eadem quoque ratione diminuitur summa virium particulæ ejusdem, in locis hinc inde à Tropico æqualiter distantibus: uti ex prædemonstratis facilè ostendi possit: & propterea vis tota particulæ illius, in revolutione integrâ, ad æquinoctia movenda, ut & vis tota particularum omnium, & motus æquinoctiorum à vi illa oriundus, diminuitur in eadem ratione. Igitur cum inclinatio illa sit 23½ gr. diminuendus est motus 54″. 29″′. in ratione Sinus 91706 (qui sinus est complementi graduum 23½) ad Radium 100000. Qua ratione motus iste jam fiet 49″. 58″′. Regrediuntur igitur puncta æquinoctiorum motu annuo (juxta computationem nostram) 49″. 58″′, fere ut Phænomena cœlestia requirunt. Nam regressus ille annuus ex observationibus Astronomorum est 50″.
Descripsimus jam Systema Solis, Terræ & Planetarum: superest ut de Cometis nonnulla adjiciantur.
Lemma IV.
Cometas esse Lunâ superiores & in regione Planetarum versari.
Ut defectus Parallaxeos diurnæ extulit Cometas supra regiones
sublunares, sic ex Parallaxi annua convincitur eorum descensus in
regiones Planetarum. Nam Cometæ qui progrediuntur secundum ordinem
signorum sunt omnes, sub exitu apparitionis, aut solito tardiores aut
retrogradi, si Terra est inter ipsos & Solem, at justo celeriores si
Terra vergit ad oppositionem. Et è contra, qui pergunt contra ordinem
signorum sunt justo celeriores in fine apparitionis, si Terra versatur
inter ipsos & Solem; & justo tardiores vel retrogradi si Terra
sita est ad contrarias partes. Contingit hoc maximè ex motu Terræ in
vario ipsius situ, perinde ut fit in Planetis, qui, pro motu Terræ vel
conspirante vel contrario, nunc retrogradi sunt, nunc tardiùs moveri
videntur, nunc verò celeriùs. Si Terra pergit ad eandem partem cum
Cometa, & motu angulari circa Solem celerius fertur, Cometa è Terra
spectatus, ob motum suum tardiorem, apparet esse retrogradus; sin Terra
tardiùs fertur, motus Cometæ, (detracto motu Terræ) fit saltem tardior.
At si Terra pergit in contrarias partes, Cometa exinde velocior apparet.
Ex acceleratione autem vel retardatione vel motu retrogrado distantia
Cometæ in hunc modum colligitur. Sunto QA,
QB,
QC observatæ tres
longitudines Cometæ, sub initio motus, sitque
QF longitudo ultimò
observata, ubi Cometa videri desinit. Agatur recta ABC, cujus
partes AB, BC rectis QA & QB, QB
& QC interjectæ, sint ad invicem ut tempora inter
observationes tres primas. Producatur AC ad G, ut sit
AG ad AB ut tempus inter observationem primam &
ultimam, ad tempus inter observationem primam & secundam, &
jungatur QG. Et si Cometa moveretur uniformiter in linea recta,
atque Terra vel quiesceret, vel etiam in linea recta, uniformi cum motu,
progrederetur; foret angulus
QG longitudo Cometæ tempore Observationis ultimæ. Angulus
igitur FQG, qui longitudinum differentia est, oritur ab
inæqualitate motuum Cometæ ac Terræ. Hic autem angulus, si Terra &
Cometa in contrarias partes moventur, additur angulo AQG, &
sic motum apparentem Cometæ velociorem reddit: Sin Cometa pergit in
easdem partes cum Terra, eidem subducitur, motumque Cometæ vel tardiorem
reddit, vel forte retrogradum; uti modò exposui. Oritur igitur hic
angulus præcipuè ex motu Terræ, & idcirco pro parallaxi Cometæ meritò
habendus est, neglecto
videlicet ejus incremento vel decremento nonnullo, quod à Cometæ motu
inæquabili in orbe proprio oriri possit. Distantia verò Cometæ ex hac
parallaxi sic colligitur. Designet S Solem, acT Orbem
magnum, a locum Terræ in observatione prima, c locum Terræ
in observatione secunda, T locum Terræ in observatione ultima,
& T
lineam rectam versus
principium Arietis ductam. Sumatur angulus
TV æqualis angulo
QF, hoc est æqualis
longitudini Cometæ ubi Terra versatur in T. Jungatur ac,
& producatur ea ad g, ut sit ag ad ac ut
AG ad AC, & erit g locus quem Terra tempore
observationis ultimæ, motu in recta ac uniformiter continuato,
attingeret. Ideoque si ducatur g
ipsi T
parallela, & capiatur angulus
gV angulo
QG æqualis, erit hic angulus
gV æqualis longitudini
Cometæ è loco g spectati; & angulus TVg parallaxis
erit, quæ oritur à translatione Terræ de loco g in locum T:
ac proinde V locus erit Cometæ in plano Eclipticæ. Hic autem locus
V orbe Jovis inferior esse solet.
Idem colligitur ex curvatura viæ Cometarum. Pergunt hæc corpora propemodum in circulis maximis quamdiu moventur celerius; at in fine cursus, ubi motus apparentis pars illa quæ à parallaxi oritur, majorem habet proportionem ad motum totum apparentem, deflectere solent ab his circulis, & quoties Terra movetur in unam partem abire in partem contrariam. Oritur hæc deflexio maximè ex Parallaxi, propterea quod respondet motui Terræ; & insignis ejus quantitas meo computo collocavit disparentes Cometas satis longè infra Jovem. Unde consequens est quòd in Perigæis & Periheliis, ubi propius adsunt, descendunt sæpius infra orbes Martis & inferiorum Planetarum.
Confirmatur etiam propinquitas Cometarum ex luce capitum. Nam corporis cœlestis à Sole illustrati & in regiones longinquas abeuntis diminuitur splendor in quadruplicata ratione distantiæ: in duplicata ratione videlicet ob auctam corporis distantiam à Sole, & in alia duplicata ratione ob diminutam diametrum apparentem. Unde si detur & lucis quantitas & apparens diameter Cometæ, dabitur distantia, dicendo quod distantia sit ad distantiam Planetæ in ratione integra diametri ad diametrum directè & ratione dimidiata lucis ad lucem inversè. Sic minima Capillitii Cometæ anni 1682 diameter, per Tubum opticum sexdecim pedum à Cl. Flamstedio observata & micrometro mensurata, æquabat 2′. 0″. Nucleus autem seu stella in medio capitis vix decimam partem latitudinis hujus occupabat, adeoque lata erat tantum 11″ vel 12″. Luce verò & claritate capitis superabit caput Cometæ anni 1680, stellasque primæ vel secundæ magnitudinis æmulabatur. Ponamus Saturnum cum annulo suo quasi quadruplo lucidiorem fuisse: & quoniam lux annuli propemodum æquabat lucem globi intermedii, & diameter apparens globi sit quasi 21″, adeoque lux globi & annuli conjunctim æquaret lucem globi, cujus diameter esset 30″: erit distantiæ Cometæ ad distantiam Saturni ut 1 ad √4 inversè, & 12″ ad 30″ directè, id est ut 24 ad 30 seu 4 ad 5. Rursus Cometa anni 1665 mense Aprili, ut Author est Hevelius, claritate sua pene fixas omnes superabat, quinetiam ipsum Saturnum, ratione coloris videlicet longè vividioris. Quippe lucidior erat hic Cometa altero illo, qui in fine anni præcedentis apparuerat & cum stellis primæ magnitudinis conferebatur. Latitudo capillitii erat quasi 6′, at nucleus cum Planetis ope Tubi optici collatus, plane minor erat Jove, & nunc minor corpore intermedio Saturni, nunc ipsi æqualis judicabatur. Porrò cum diameter Capillitii Cometarum rarò superet 8′ vel 12′, diameter verò Nuclei seu stellæ centralis sit quasi decima vel fortè decima quinta pars diametri capillitii, patet Stellas hasce ut plurimum ejusdem esse apparentis magnitudinis cum Planetis. Unde cum lux eorum cum luce Saturni non rarò conferri possit, eamque aliquando superet; manifestum est quod Cometæ omnes in Periheliis vel infra Saturnum collocandi sint, vel non longe supra. Errant igitur toto cœlo qui Cometas in regionem Fixarum prope ablegant: qua certè ratione non magis illustrari deberent à Sole nostro, quàm Planetæ, qui hic sunt, illustrantur à Stellis fixis.
Hæc disputavimus non considerando obscurationem Cometarum per fumum illum maximè copiosum & crassum, quo caput circundatur, quasi per nubem obtusè semper lucens. Nam quanto obscurius redditur corpus per hunc fumum, tanto propius ad Solem accedat necesse est, ut copia lucis à se reflexa Planetas æmuletur. Inde verisimile fit Cometas longe infra Sphæram Saturni descendere, uti ex Parallaxi probavimus. Idem verò quam maximè confirmatur ex Caudis. Hæ vel ex reflexione fumi sparsi per æthera, vel ex luce capitis oriuntur. Priore casu minuenda est distantia Cometarum, ne fumus à Capite semper ortus per spatia nimis ampla incredibili cum velocitate & expansione propagetur. In posteriore referenda est lux omnis tam caudæ quàm capillitii ad Nucleum capitis. Igitur si imaginemur lucem hanc omnem congregari & intra discum Nuclei coarctari, Nucleus ille jam certè, quoties caudam maximam & fulgentissimam emittit, Jovem ipsum splendore suo multum superabit. Minore igitur cum diametro apparente plus lucis emittens, multò magis illustrabitur à Sole, adeoque erit Soli multò propior. Quinetiam capita sub Sole delitescentia, & caudas cum maximas tum fulgentissimas instar trabium ignitarum nonnunquam emittentia, eodem argumento infra orbem Veneris collocari debent. Nam lux illa omnis si in stellam congregari supponatur, ipsam Venerem ne dicam Veneres plures conjunctas quandoque superaret.
Idem denique colligitur ex luce capitum crescente in recessu Cometarum à Terra Solem versus, ac decrescente in eorum recessu à Sole versus Terram. Sic enim Cometa posterior Anni 1665 (observante Hevelio,) ex quo conspici cæpit, remittebat semper de motu suo, adeoque præterierat Perigæum; Splendor verò capitis nihilominus indies crescebat, usque dum Cometa radiis Solaribus obtectus desiit apparere. Cometa Anni 1683, observante eodem Hevelio, in fine Mensis Julii ubi primum conspectus est, tardissimè movebatur, minuta prima 40 vel 45 circiter singulis diebus in orbe suo conficiens. Ex eo tempore motus ejus diurnus perpetuo augebatur usque ad Sept. 4. quando evasit graduum quasi quinque. Igitur toto hoc tempore Cometa ad Terram appropinquabat. Id quod etiam ex diametro capitis micrometro mensurata colligitur: quippe quam Hevelius reperit Aug. 6. esse tantum 6′. 5″ inclusâ comâ, at Sept. 2. esse 9′. 7″. Caput igitur initio longe minus apparuit quàm in fine motus, at initio tamen in vicinia Solis longe lucidius extitit quàm circa finem, ut refert idem Hevelius. Proinde toto hoc tempore, ob recessum ipsius à Sole, quoad lumen decrevit, non obstante accessu ad Terram. Cometa Anni 1618 circa medium Mensis Decembris, & iste Anni 1680 circa finem ejusdem Mensis, celerrimè movebantur, adeoque tunc erant in Perigæis. Verum splendor maximus capitum contigit ante duas fere septimanas, ubi modò exierant de radiis Solaribus; & splendor maximus caudarum paulo ante, in majore vicinitate Solis. Caput Cometæ prioris, juxta observationes Cysati, Decem. 1. majus videbatur stellis primæ magnitudinis, & Decem. 16. (jam in Perigæo existens) magnitudine parùm, splendore seu claritate luminis plurimum defecerat. Jan. 7. Keplerus de capite incertus finem fecit observandi. Die 12 mensis Decemb. conspectum & à Flamstedio observatum est caput Cometæ posterioris, in distantia novem graduum à Sole; id quod stellæ tertiæ magnitudinis vix concessum fuisset. Decem. 15 & 17 apparuit idem ut stella tertiæ magnitudinis, diminutum utique splendore Nubium juxta Solem occidentum. Decem. 26. velocissimè motus, inque Perigæo propemodum existens, cedebat ori Pegasi, Stellæ tertiæ magnitudinis. Jan. 3. apparebat ut Stella quartæ, Jan. 9. ut Stella quintæ, Jan. 13. ob splendorem Lunæ crescentis disparuit. Jan. 25. vix æquabat Stellas magnitudinis septimæ. Si sumantur æqualia à Perigæo hinc inde tempora, capita quæ temporibus illis in longinquis regionibus posita, ob æquales à Terra distantias, æqualiter lucere debuissent, in plaga Solis maximè splenduere, ex altera Perigæi parte evanuere. Igitur ex magna lucis in utroque situ differentia concluditur magna Solis & Cometæ vicinitas in situ priore. Nam lux Cometarum regularis esse solet, & maxima apparere ubi capita velocissimè moventur, atque adeo sunt in Perigæis; nisi quatenus ea major est in vicinia Solis.
Corol. 1. Splendent igitur Cometæ luce Solis à se reflexa.
Corol. 2. Ex dictis etiam intelligitur cur Cometæ tantopere frequentant regionem Solis. Si cernerentur in regionibus longè ultra Saturnum deberent sæpius apparere in partibus Soli oppositis. Forent enim Terræ vicinioris qui in his partibus versarentur, & Sol interpositus obscuraret cæteros. Verum percurrendo historias Cometarum reperi quod quadruplo vel quintuplo plures detecti sunt in Hemisphærio Solem versus, quàm in Hemisphærio opposito, præter alios procul dubio non paucos quos lux Solaris obtexit. Nimirum in descensu ad regiones nostras neque caudas emittunt, neque adeo illustrantur à Sole, ut nudis oculis se prius detegendos exhibeant, quàm sint ipso Jove propiores. Spatii autem tantillo intervallo circa Solem descripti pars longè major sita est à latere Terræ quod Solem respicit; inque parte illa majore Cometæ Soli ut plurimum viciniores magis illuminari solent.
Corol. 3. Hinc etiam manifestum est, quod cœli resistentia destituuntur. Nam Cometæ vias obliquas & nonnunquam cursui Planetarum contrarias secuti, moventur omnifariam liberrimè, & motus suos etiam contra cursum Planetarum diutissimè conservant. Fallor ni genus Planetarum sint, & motu perpetuo in orbem redeant. Nam quod Scriptores aliqui Meteora esse volunt, argumentum à capitum perpetuis mutationibus ducentes, fundamento carere videtur. Capita Cometarum Atmosphæris ingentibus cinguntur; & Atmosphæræ infernè densiores esse debent. Unde nubes sunt non ipsa Cometarum corpora, in quibus mutationes illæ visuntur. Sic Terra si è Planetis spectaretur, luce nubium suarum proculdubio splenderet, & corpus firmum sub nubibus prope delitesceret. Sic cingula Jovis in nubibus Planetæ illius formata, situm mutant inter se, & firmum Jovis corpus per nubes illas difficilius cernitur. Et multo magis corpora Cometarum sub Atmosphæris & profundioribus & crassioribus abscondi debent.
Prop. XL. Theor. XXI.
Cometas in Sectionibus conicis umbilicos in centro Solis habentibus moveri, & radiis ad solem ductis areas temporibus proportionales describere.
Patet per Corol. 1. Prop. XIII. Libri primi, collatum cum Prop. VIII, XII & XIII. Libri tertii.
Corol. 1. Hinc si Cometæ in orbem redeunt, orbes erunt Ellipses, & tempora periodica erunt ad tempora periodica Planetarum in ratione sesquialtera transversorum axium. Ideoque Cometæ maxima ex parte supra Planetas versantes, & eo nomine orbes axibus majoribus describentes, tardius revolventur. Ut si axis orbis Cometæ sit quadruplo major axe orbis Saturni, tempus revolutionis Cometæ erit ad tempus revolutionis Saturni, id est ad annos 30, ut 4√4 (seu 8) ad 1, ideoque erit annorum 240.
Corol. 2. Orbes autem erunt Parabolis adeo finitimi, ut eorum vice Parabolæ absque erroribus sensibilibus adhiberi possunt.
Corol. 3. Et propterea, per Corol. 7. Prop. XVI. Lib. I. velocitas Cometæ omnis erit semper ad velocitatem Planetæ cujusvis circa Solem in circulo revolventis, in dimidiata ratione duplicatæ distantiæ Cometæ à centro Solis ad distantiam Planetæ à centro Solis quamproximè. Ponamus radium orbis magni, seu Ellipseos in qua Terra revolvitur semidiametrum transversam, esse partium 100000000, & Terra motu suo diurno mediocri describet partes 1720212, & motu horario partes 71675½. Ideoque Cometa in eadem Telluris à Sole distantia mediocri, ea cum velocitate quæ sit ad velocitatem Telluris ut √2 ad 1, describet motu suo diurno partes 2432747, & motu horario partes 101364½. In majoribus autem vel minoribus distantiis, motus tum diurnus tum horarius erit ad hunc motum diurnum & horarium in dimidiata ratione distantiarum respectivè, ideoque datur.
Lemma V.
Invenire lineam curvam generis Parabolici, quæ per data quotcunque puncta transibit.
Sunto puncta illa A, B, C, D, E, F, &c. & ab iisdem ad rectam quamvis positione datam HN demitte perpendicula quotcunque AH, BI, CK, DL, EM, FN.
Cas. 1. Si punctorum H, I, K, L, M, N æqualia sunt intervalla HI, IK, KL, &c. collige perpendiculorum AH, BI, CK &c. differentias primas b, 2b, 3b, 4b, 5b, &c. secundas c, 2c, 3c, 4c, &c. tertias d, 2d, 3d, &c. id est, ita ut sit HA - BI = b, BI- CK = 2b, CK - DL = 3b, DL + EM = 4b, - EM + FN = 5b, &c. dein b - 2b = c &c. & sic pergatur ad differentiam ultimam, quæ hic est f. Deinde erecta quacunque perpendiculari RS, quæ fuerit ordinatim applicata ad curvam quæsitam: ut inveniatur hujus longitudo, pone intervalla HI, IK, KL, LM, &c. unitates esse, & dic AH = a, - HS = p, ½p in - IS = q, ⅓q in + SK = r, ¼r in + SL = s, 1/5s in + SM = t; pergendo videlicet ad usque penultimum perpendiculum ME, & præponendo signa negativa terminis HS, IS, &c. qui jacent ad partes puncti S versus A, & signa affirmativa terminis SK, SL, &c. qui jacent ad alteras partes puncti S. Et signis probe observatis erit RS = a + bp + cq + dr + es + ft &c.
Cas. 2. Quod si punctorum H, I, K, L, &c. inæqualia sint intervalla HI, IK, &c. collige perpendiculorum AH, BI, CK, &c. differentias primas per intervalla perpendiculorum divisas b, 2b, 3b, 4b, 5b; secundas per intervalla bina divisas c, 2c, 3c, 4c, &c. tertias per intervalla terna divisas d, 2d, 3d, &c. quartas per intervalla quaterna divisas e, 2e, &c. & sic deinceps; id est ita ut sit b = {AH - BI} ÷ HI, 2b = {BI - CK} ÷ IK, 3b = {CK - DL} ÷ KL &c. dein c = {b - 2b} ÷ HK, 2c = {2b - 3b} ÷ IL, 3c = {3b - 4b} ÷ KM &c. Postea d = {c - 2c} ÷ HL, 2d = {2c - 3c} ÷ IM &c. Inventis differentiis, dic AH = a, - HS = p, p in - IS = q, q in + SK = r, r in + SL = s, s in + SM = t; pergendo scilicet ad usque perpendiculum penultimum ME, & erit ordinatim applicata RS = a + bp + cq + dr + es + ft, &c.
Corol. Hinc areæ curvarum omnium inveniri possunt quamproximè. Nam si curvæ cujusvis quadrandæ inveniantur puncta aliquot, & Parabola per eadem duci intelligatur: erit area Parabolæ hujus eadem quam proximè cum area curvæ illius quadrandæ. Potest autem Parabola per Methodos notissimas semper quadrari Geometricè.
Lemma VI.
Ex observatis aliquot locis Cometæ invenire locum ejus ad tempus quodvis intermedium datum.
Designent HI, IK, KL, LM tempora inter observationes, (in Fig. præced.) HA, IB, KC, LD, ME, observatas quinque longitudines Cometæ, HS tempus datum inter observationem primam & longitudinem quæsitam. Et si per puncta A, B, C, D, E duci intelligatur curva regularis ABCDE; & per Lemma superius inveniatur ejus ordinatim applicata RS, erit RS longitudo quæsita.
Eadem methodo ex observatis quinque latitudinibus invenitur latitudo ad tempus datum.
Si longitudinum observatarum parvæ sint differentiæ, puta graduum tantum 4 vel 5; suffecerint observationes tres vel quatuor ad inveniendam longitudinem & latitudinem novam. Sin majores sint differentiæ, puta graduum 10 vel 20, debebunt observationes quinque adhiberi.
Lemma VII.
Per datum punctum P ducere rectam lineam BC, cujus partes PB, PC, rectis duabus positione datis AB, AC abscissæ, datam habeant rationem ad invicem.
A puncto illo P ad rectarum alterutram AB ducatur recta quævis PD, & producatur eadem versus rectam alteram AC usque ad E, ut sit PE ad PD in data illa ratione. Ipsi AD parallela sit EC; & si agatur CPB, erit PC ad PB ut PE ad PD. Q. E. F.
Lemma VIII.
Sit ABC Parabola umbilicum habens S. Chordâ AC bisectâ in I abscindatur segmentum ABCI, cujus diameter sit Iμ & vertex μ. In Iμ productâ capiatur μO æqualis dimidio ipsius Iμ. Jungatur OS, & producatur ea ad ξ, ut sit Sξ æqualis 2SO. Et si Cometa B moveatur in arcu CBA, & agatur ξB secans AC in E: dico quod punctum E abscindet de chorda AC segmentum AE tempori proportionale quamproximè.
Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea AEY ad aream curvilineam ACY ut AE ad AC quamproximè. Ideoque cum triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè. Cum autem ξO sit ad SO ut 3 ad 1 & EO ad YO prope in eadem ratione, erit SY ipsi EB parallela quamproximè, & propterea triangulum SEB, triangulo YEB quamproximè æquale. Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, manebit area ASBY areæ ASEY æqualis quamproximè, atque adeo ad aream ASCY ut AE ad AC. Sed area ASBY est ad aream ASCY ut tempus descripti arcus AB ad tempus descripti arcus totius. Ideoque AE est ad AC in ratione temporum quamproximè. Q. E. D.
Lemma IX.
Rectæ Iμ & μM & longitudo AIC ÷ 4Sμ æquantur inter se. Nam 4Sμ est latus rectum Parabolæ pertinens ad verticem B.
Lemma X.
Si producatur Sμ ad N & P, ut μN sit pars tertia ipsius μI, & SP sit ad SN ut SN ad Sμ. Cometa quo tempore describit arcum AμC, si progrederetur ea semper cum velocitate quam habet in altitudine ipsi SP æquali, describeret longitudinem æqualem chordæ AC.
Nam si velocitate quam habet in μ, eodem tempore progrediatur uniformiter in recta quæ Parabolam tangit in μ; area quam Radio ad punctum S ducto describeret, æqualis esset areæ Parabolicæ ASCμ. Ideoque contentum sub longitudine in Tangente descripta & longitudine Sμ, esset ad contentum sub longitudinibus AC & SM, ut area ASCμ ad triangulum ASCM, id est ut SN ad SM. Quare AC est ad longitudinem in tangente descriptam ut Sμ ad SN. Cum autem velocitas Cometæ in altitudine SP sit ad velocitatem in altitudine Sμ in dimidiata ratione SP ad Sμ inversè, id est in ratione Sμ ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut Sμ ad SN. Igitur AC & longitudo hac nova velocitate descripta, cum sint ad longitudinem in Tangente descriptam in eadem ratione, æquantur inter se. Q. E. D.
Corol. Cometa igitur ea cum velocitate, quam habet in altitudine Sμ + ⅔Iμ, eodem tempore describeret chordam AC quamproximè.
Lemma XI.
Si Cometa motu omni privatus de altitudine SN seu Sμ + ⅓Iμ demitteretur, ut caderet in Solem, & ea semper vi uniformiter continuata urgeretur in Solem qua urgetur sub initio; idem tempore in orbe suo describat arcum AC, descensu suo describeret spatium longitudini Iμ æquale.
Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum velocitate quam habet in altitudine SP (per Lemma novissimum) describet chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici chordam AC in dimidiata ratione unius ad duo. Et propterea eo cum pondere quod habet in Solem in altitudine SP, cadendo de altitudine illa in Solem, describeret eodem tempore (per Scholium Prop. IV. Lib. I.) spatium æquale quadrato semissis chordæ illius applicato ad quadruplum altitudinis SP, id est spatium AIq. ÷ 4SP. Unde cum pondus Cometæ in Solem in altitudine SN sit ad ipsius pondus in Solem in altitudine SP, ut SP ad Sμ: Cometa pondere quod habet in altitudine SN eodem tempore, in Solem cadendo, describet spatium AIq. ÷ 4Sμ, id est spatium longitudini Iμ vel Mμ æquale. Q. E. D.
Prop. XLI. Prob. XX.
Cometæ in Parabola moventis Trajectoriam ex datis tribus observationibus determinare.
Problema hocce longe difficillimum multimodè aggressus, composui Problemata quædam in Libro primo quæ ad ejus solutionem spectant. Postea solutionem sequentem paulò simpliciorem excogitavi.
Seligantur tres observationes æqualibus temporum intervallis ab invicem quamproximè distantes. Sit autem temporis intervallum illud ubi Cometa tardius movetur paulo majus altero, ita videlicet ut temporum differentia sit ad summam temporum ut summa temporum ad dies plus minus sexcentos. Si tales observationes non præsto sint, inveniendus est novus Cometæ locus per Lemma sextum.