Quality Control Engineering

Quality Improvement And Statistics

Quality Improvement and Statistics

The quality of products and services has become a major decision factor in most businesses today. Regardless of whether the consumer is an individual, a corporation, a military defense program, or a retail store, when the consumer is making purchase decisions, he or she is likely to consider quality of equal importance to cost and schedule. Consequently, quality improvement has become a major concern to many U.S. corporations. This chapter is about statistical quality control, a collection of tools that are essential in quality-improvement activities.

Quality means fitness for use. For example, you or I may purchase automobiles that we expect to be free of manufacturing defects and that should provide reliable and economical transportation, a retailer buys finished goods with the expectation that they are properly packaged and arranged for easy storage and display, or a manufacturer buys raw material and expects to process it with no rework or scrap. In other words, all consumers expect that the products and services they buy will meet their requirements. Those requirements define fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and quality of conformance. By quality of design we mean the different grades or levels of performance, reliability, serviceability, and function that are the result of deliberate engineering and management decisions. By quality of conformance, we mean the systematic reduction of variability and elimination of defects until every unit produced is identical and defect-free.

Some confusion exists in our society about quality improvement; some people still think that it means gold-plating a product or spending more money to develop a product or process. This thinking is wrong. Quality improvement means the systematic elimination of waste. Examples of waste include scrap and rework in manufacturing, inspection and testing, errors on documents (such as engineering drawings, checks, purchase orders, and plans), customer  complaint hotlines, warranty costs, and the time required to do things over again that could have been done right the first time. A successful quality-improvement effort can eliminate much of this waste and lead to lower costs, higher productivity, increased customer satisfaction, increased business  reputation, higher market share, and ultimately higher profits for the company.

Statistical methods play a vital role in quality improvement. Some applications are outlined below:

1. In product design and development, statistical methods, including designed experiments, can be used to compare different materials, components, or ingredients, and to help determine both system and component tolerances. This application can significantly lower development costs and reduce  development time.

2. Statistical methods can be used to determine the capability of a manufacturing process. Statistical process control can be used to systematically improve a process by reducing variability.

3. Experimental design methods can be used to investigate improvements in the process. These improvements can lead to higher yields and lower  manufacturing costs.

4. Life testing provides reliability and other performance data about the product. This can lead to new and improved designs and products that have longer useful lives and lower operating and maintenance costs.

Some of these applications have been illustrated in earlier chapters of this book. It is essential that engineers, scientists, and managers have an in-depth understanding of these statistical tools in any industry or business that wants to be a high-quality, low-cost producer. In this chapter we provide an introduction to the basic methods of statistical quality control that, along with experimental design, form the basis of a successful qualityimprovement effort.